IGF2BP3 is upregulated in endometrial cancer and tightly regulates the growth of drug-resistant endometrial cancer cells via HMGA1.

IF 2.6 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Yiwei Zhang, Yanlai Xiao, Xiangzhai Zhao, Jie Xu, Huan Zhao, Zhaojun Guo, Jun Zhao, Yajing Zhang, Ruoxi Wang, Jian Wang
{"title":"IGF2BP3 is upregulated in endometrial cancer and tightly regulates the growth of drug-resistant endometrial cancer cells via HMGA1.","authors":"Yiwei Zhang, Yanlai Xiao, Xiangzhai Zhao, Jie Xu, Huan Zhao, Zhaojun Guo, Jun Zhao, Yajing Zhang, Ruoxi Wang, Jian Wang","doi":"10.1177/00368504251315008","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Endometrial cancer (EC) is a malignant tumor with various histological subtypes and molecular phenotypes. The evaluation of drug resistance is important for cancer treatment. Progesterone resistance is the major challenge in EC. Knowledge of drug resistance in EC is important in the development of novel therapies.</p><p><strong>Methods: </strong>In this study, ten paracancerous and ten tumor tissues were collected to measure the expression of insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) and high-mobility group protein 1 (HMGA1). AN3CA and Ishikawa cells were used to explore the effects of IGF2BP3 on EC.</p><p><strong>Results: </strong>The expression levels of IGF2BP3 and HMGA1 were higher in EC tumor tissues than in paracancerous tissues. IGF2BP3 and HMGA1 are highly expressed in cisplatin-resistant EC cells. IGF2BP3 knockdown decreased the growth of cisplatin-resistant EC cells. Knockdown of IGF2BP3 decreased the level of HMGA1 protein. HMGA1 knockdown decreased the growth of cisplatin-resistant EC cells.</p><p><strong>Discuss and conclusions: </strong>The findings demonstrate that IGF2BP3 is upregulated in EC and closely regulates the growth of drug-resistant EC cells via HMGA1. The findings will inform the development of novel therapies for EC.</p>","PeriodicalId":56061,"journal":{"name":"Science Progress","volume":"108 1","pages":"368504251315008"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775961/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Progress","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1177/00368504251315008","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Endometrial cancer (EC) is a malignant tumor with various histological subtypes and molecular phenotypes. The evaluation of drug resistance is important for cancer treatment. Progesterone resistance is the major challenge in EC. Knowledge of drug resistance in EC is important in the development of novel therapies.

Methods: In this study, ten paracancerous and ten tumor tissues were collected to measure the expression of insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) and high-mobility group protein 1 (HMGA1). AN3CA and Ishikawa cells were used to explore the effects of IGF2BP3 on EC.

Results: The expression levels of IGF2BP3 and HMGA1 were higher in EC tumor tissues than in paracancerous tissues. IGF2BP3 and HMGA1 are highly expressed in cisplatin-resistant EC cells. IGF2BP3 knockdown decreased the growth of cisplatin-resistant EC cells. Knockdown of IGF2BP3 decreased the level of HMGA1 protein. HMGA1 knockdown decreased the growth of cisplatin-resistant EC cells.

Discuss and conclusions: The findings demonstrate that IGF2BP3 is upregulated in EC and closely regulates the growth of drug-resistant EC cells via HMGA1. The findings will inform the development of novel therapies for EC.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Progress
Science Progress Multidisciplinary-Multidisciplinary
CiteScore
3.80
自引率
0.00%
发文量
119
期刊介绍: Science Progress has for over 100 years been a highly regarded review publication in science, technology and medicine. Its objective is to excite the readers'' interest in areas with which they may not be fully familiar but which could facilitate their interest, or even activity, in a cognate field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信