Pancreatic β cell-secreted factor FGF23 attenuates Alzheimer's disease-related amyloid β-induced neuronal death.

IF 2.2 Q2 MULTIDISCIPLINARY SCIENCES
PNAS nexus Pub Date : 2025-01-28 eCollection Date: 2025-01-01 DOI:10.1093/pnasnexus/pgae542
Kyosuke Yazawa, Mieko Nakashima, Tadashi Nakagawa, Yuhki Yanase, Yukari Yoda, Koichiro Ozawa, Toru Hosoi
{"title":"Pancreatic β cell-secreted factor FGF23 attenuates Alzheimer's disease-related amyloid β-induced neuronal death.","authors":"Kyosuke Yazawa, Mieko Nakashima, Tadashi Nakagawa, Yuhki Yanase, Yukari Yoda, Koichiro Ozawa, Toru Hosoi","doi":"10.1093/pnasnexus/pgae542","DOIUrl":null,"url":null,"abstract":"<p><p>Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and memory impairment. The pathophysiology of AD may involve aggregated amyloid β (Aβ) accumulation, which may underlie the disease mechanism. Patients with diabetes exhibit an elevated risk of developing AD, indicating potential therapeutic implications upon elucidating the underlying mechanisms. We hypothesized that pancreatic β cell-secreted factors could protect neurons from Aβ-induced toxicity. Therefore, we established an experimental model to elucidate the communication between pancreatic β cells and neuronal cells. Notably, our findings demonstrate that pancreatic β cell culture supernatant effectively inhibits Aβ-induced neuronal cell death. Transcriptomic analysis showed significant up-regulation of multiple ribosomal protein genes in neuronal cells treated with pancreatic β cell culture supernatant. Fibroblast growth factor 23, a secreted factor from pancreatic β cells, significantly suppressed Aβ-induced neuronal cell death. Our findings suggest that pancreatic β cells may secrete previously unrecognized neuroprotective factors, thereby attenuating neuronal cell death in AD.</p>","PeriodicalId":74468,"journal":{"name":"PNAS nexus","volume":"4 1","pages":"pgae542"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773612/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgae542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive decline and memory impairment. The pathophysiology of AD may involve aggregated amyloid β (Aβ) accumulation, which may underlie the disease mechanism. Patients with diabetes exhibit an elevated risk of developing AD, indicating potential therapeutic implications upon elucidating the underlying mechanisms. We hypothesized that pancreatic β cell-secreted factors could protect neurons from Aβ-induced toxicity. Therefore, we established an experimental model to elucidate the communication between pancreatic β cells and neuronal cells. Notably, our findings demonstrate that pancreatic β cell culture supernatant effectively inhibits Aβ-induced neuronal cell death. Transcriptomic analysis showed significant up-regulation of multiple ribosomal protein genes in neuronal cells treated with pancreatic β cell culture supernatant. Fibroblast growth factor 23, a secreted factor from pancreatic β cells, significantly suppressed Aβ-induced neuronal cell death. Our findings suggest that pancreatic β cells may secrete previously unrecognized neuroprotective factors, thereby attenuating neuronal cell death in AD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信