Designer Organs: Ethical Genetic Modifications in the Era of Machine Perfusion.

IF 12.8 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL
Irina Filz von Reiterdank, Raphaela Bento, Insoo Hyun, Rosario Isasi, Susan M Wolf, J Henk Coert, Aebele B Mink van der Molen, Biju Parekkadan, Korkut Uygun
{"title":"Designer Organs: Ethical Genetic Modifications in the Era of Machine Perfusion.","authors":"Irina Filz von Reiterdank, Raphaela Bento, Insoo Hyun, Rosario Isasi, Susan M Wolf, J Henk Coert, Aebele B Mink van der Molen, Biju Parekkadan, Korkut Uygun","doi":"10.1146/annurev-bioeng-062824-121925","DOIUrl":null,"url":null,"abstract":"<p><p>Gene therapy is a rapidly developing field, finally yielding clinical benefits. Genetic engineering of organs for transplantation may soon be an option, thanks to convergence with another breakthrough technology, ex vivo machine perfusion (EVMP). EVMP allows access to the functioning organ for genetic manipulation prior to transplant. EVMP has the potential to enhance genetic engineering efficiency, improve graft survival, and reduce posttransplant complications. This will enable genetic modifications with a vast variety of applications, while raising questions on the ethics and regulation of this emerging technology. This review provides an in-depth discussion of current methodologies for delivering genetic vectors to transplantable organs, particularly focusing on the enabling role of EVMP. Organ-by-organ analysis and key characteristics of various vector and treatment options are assessed. We offer a road map for research and clinical translation, arguing that achieving scientific benchmarks while creating anticipatory governance is necessary to secure societal benefit from this technology.</p>","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":" ","pages":""},"PeriodicalIF":12.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-bioeng-062824-121925","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Gene therapy is a rapidly developing field, finally yielding clinical benefits. Genetic engineering of organs for transplantation may soon be an option, thanks to convergence with another breakthrough technology, ex vivo machine perfusion (EVMP). EVMP allows access to the functioning organ for genetic manipulation prior to transplant. EVMP has the potential to enhance genetic engineering efficiency, improve graft survival, and reduce posttransplant complications. This will enable genetic modifications with a vast variety of applications, while raising questions on the ethics and regulation of this emerging technology. This review provides an in-depth discussion of current methodologies for delivering genetic vectors to transplantable organs, particularly focusing on the enabling role of EVMP. Organ-by-organ analysis and key characteristics of various vector and treatment options are assessed. We offer a road map for research and clinical translation, arguing that achieving scientific benchmarks while creating anticipatory governance is necessary to secure societal benefit from this technology.

设计器官:机器灌注时代的伦理基因修饰。
基因治疗是一个快速发展的领域,最终产生了临床效益。由于与另一项突破性技术——体外机器灌注(EVMP)的融合,用于移植器官的基因工程可能很快成为一种选择。EVMP允许在移植前对功能器官进行基因操作。EVMP具有提高基因工程效率、提高移植物存活率和减少移植后并发症的潜力。这将使基因修饰具有广泛的应用,同时也提出了关于这一新兴技术的伦理和监管问题。这篇综述深入讨论了目前将遗传载体传递到可移植器官的方法,特别关注EVMP的启用作用。评估了各器官的分析和各种病媒和治疗方案的关键特征。我们为研究和临床转化提供了路线图,认为在创造预期治理的同时实现科学基准对于确保这项技术的社会效益是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual Review of Biomedical Engineering
Annual Review of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
18.80
自引率
0.00%
发文量
14
期刊介绍: Since 1999, the Annual Review of Biomedical Engineering has been capturing major advancements in the expansive realm of biomedical engineering. Encompassing biomechanics, biomaterials, computational genomics and proteomics, tissue engineering, biomonitoring, healthcare engineering, drug delivery, bioelectrical engineering, biochemical engineering, and biomedical imaging, the journal remains a vital resource. The current volume has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信