Huihui Liu , Sunil Kumar , Edwin Garcia , William Flanagan , Jonathan Lightley , Christopher Dunsby , Paul M.W. French
{"title":"Open-source implementation of polarisation-resolved single-shot differential phase contrast microscopy (pDPC) on a modular openFrame-based microscope","authors":"Huihui Liu , Sunil Kumar , Edwin Garcia , William Flanagan , Jonathan Lightley , Christopher Dunsby , Paul M.W. French","doi":"10.1016/j.ohx.2024.e00622","DOIUrl":null,"url":null,"abstract":"<div><div>We recently demonstrated polarisation differential phase contrast microscopy (<em>pDPC</em>) as a robust, low-cost single-shot implementation of (semi)quantitative phase imaging based on differential phase microscopy. <em>pDPC</em> utilises a polarisation-sensitive camera to simultaneously acquire four obliquely transilluminated images from which phase images mapping spatial variation of optical path difference can be calculated. <em>pDPC</em> microscopy can be implemented on existing or bespoke microscopes and can utilise radiation at a wide range of visible to near infrared wavelengths and so is straightforward to integrate with fluorescence microscopy. Here we present a low-cost open-source <em>pDPC</em> module that is designed for use with the modular open-source microscope stand “<em>openFrame</em>”. With improved hardware and software, this new <em>pDPC</em> implementation provides a real-time readout of phase across a field of view that facilitates optimisation of system alignment. We also provide protocols for background subtraction and correction of crosstalk.</div></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":"21 ","pages":"Article e00622"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773044/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067224001160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
We recently demonstrated polarisation differential phase contrast microscopy (pDPC) as a robust, low-cost single-shot implementation of (semi)quantitative phase imaging based on differential phase microscopy. pDPC utilises a polarisation-sensitive camera to simultaneously acquire four obliquely transilluminated images from which phase images mapping spatial variation of optical path difference can be calculated. pDPC microscopy can be implemented on existing or bespoke microscopes and can utilise radiation at a wide range of visible to near infrared wavelengths and so is straightforward to integrate with fluorescence microscopy. Here we present a low-cost open-source pDPC module that is designed for use with the modular open-source microscope stand “openFrame”. With improved hardware and software, this new pDPC implementation provides a real-time readout of phase across a field of view that facilitates optimisation of system alignment. We also provide protocols for background subtraction and correction of crosstalk.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.