{"title":"Symptom-based depression subtypes: brain dynamic specificity and its association with gene expression profiles.","authors":"Qunjun Liang, Zhifeng Zhou, Shengli Chen, Shiwei Lin, Xiaoshan Lin, Ying Li, Yingli Zhang, Bo Peng, Gangqiang Hou, Yingwei Qiu","doi":"10.1038/s41398-025-03238-1","DOIUrl":null,"url":null,"abstract":"<p><p>At least 227 combinations of symptoms meet the criteria for Major Depressive Disorder (MDD). However, in clinical practice, patients consistently present symptoms in a regular rather than random manner, and the neural basis underlying the MDD subtypes remains unclear. To help clarify the neural basis, patients with MDD were clustered by symptom combinations to investigate the neural underpinning of each subtype using functional resonance imaging (fMRI). Four symptom-based subtypes of MDD were identified using latent profile analysis according to the clinical scales. Subsequently, brain dynamics were evaluated using fMRI, and the dysregulations in attention and limbic network were observed among the subtypes. Correlation between brain dynamics and symptom combinations was then assessed via canonical correlation analysis (CCA). The brain-symptom correlation was higher when evaluated in subtypes (r = 0.77 to 0.92) compared to the entire group (r = 0.5). The loading weight in CCA showed that dynamics in transmodal networks contributed the most to the correlation in the subtypes characterized by typical depression symptoms, whereas unimodal networks contributed the most to subtypes characterized by anxiety and insomnia. Finally, gene expression underlying the CCA model, along with its biological encoding process, performed using a postmortem gene expression atlas revealed distinct gene enrichments for different subtypes. These findings highlight that distinct symptom clusters in MDD have specific neural correlates, providing insights into depression's heterogeneous diagnosis and precision medicine opportunities.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"15 1","pages":"33"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775246/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-025-03238-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
At least 227 combinations of symptoms meet the criteria for Major Depressive Disorder (MDD). However, in clinical practice, patients consistently present symptoms in a regular rather than random manner, and the neural basis underlying the MDD subtypes remains unclear. To help clarify the neural basis, patients with MDD were clustered by symptom combinations to investigate the neural underpinning of each subtype using functional resonance imaging (fMRI). Four symptom-based subtypes of MDD were identified using latent profile analysis according to the clinical scales. Subsequently, brain dynamics were evaluated using fMRI, and the dysregulations in attention and limbic network were observed among the subtypes. Correlation between brain dynamics and symptom combinations was then assessed via canonical correlation analysis (CCA). The brain-symptom correlation was higher when evaluated in subtypes (r = 0.77 to 0.92) compared to the entire group (r = 0.5). The loading weight in CCA showed that dynamics in transmodal networks contributed the most to the correlation in the subtypes characterized by typical depression symptoms, whereas unimodal networks contributed the most to subtypes characterized by anxiety and insomnia. Finally, gene expression underlying the CCA model, along with its biological encoding process, performed using a postmortem gene expression atlas revealed distinct gene enrichments for different subtypes. These findings highlight that distinct symptom clusters in MDD have specific neural correlates, providing insights into depression's heterogeneous diagnosis and precision medicine opportunities.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.