{"title":"A quality-by-design approach to develop abemaciclib solid lipid nanoparticles for targeting breast cancer cell lines.","authors":"Bonnie Chin, Wei Meng Lim, Samah Hamed Almurisi, Thiagarajan Madheswaran","doi":"10.1080/20415990.2025.2457314","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>Abemaciclib (ABE) is an anticancer drug that suffers from low bioavailability and multidrug resistance. This study aims to develop ABE-loaded solid lipid nanoparticles (ABE-SLNs), which will enhance drug solubility and lead to increased cellular uptake and enhanced cytotoxicity when delivering tumor cells.</p><p><strong>Methods: </strong>Melt emulsification followed by ultrasonication was used as a method of preparation and Quality-by-Design (QbD) was utilized to optimize ABE-SLNs.</p><p><strong>Results: </strong>The optimized ABE-SLNs consist of Precirol-ATO5 as a lipid and Brij-58 as a surfactant. The particle size, PDI value, and zeta potential of the optimized formulation were 170.4 ± 0.49 nm, 0.25 ± 0.014, and -26.4 ± 0.1 mV, respectively. It also showed sustained release behavior and a high entrapment efficiency of 79.96%. ABE-SLNs exhibited enhanced anticancer activity in the MDA-MB-231 and T47D breast cancer cell lines compared to pure ABE. In Caco-2 human colonic cell lines, ABE-SLNs also showed increased cellular uptake.</p><p><strong>Conclusion: </strong>The use of QbD to achieve high entrapment efficiency and sustained release in ABE-SLNs, coupled with enhanced cellular uptake and cytotoxicity, represents a novel approach that could set a new standard for nanoparticle-based drug delivery systems.</p>","PeriodicalId":22959,"journal":{"name":"Therapeutic delivery","volume":" ","pages":"1-15"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Therapeutic delivery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20415990.2025.2457314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: Abemaciclib (ABE) is an anticancer drug that suffers from low bioavailability and multidrug resistance. This study aims to develop ABE-loaded solid lipid nanoparticles (ABE-SLNs), which will enhance drug solubility and lead to increased cellular uptake and enhanced cytotoxicity when delivering tumor cells.
Methods: Melt emulsification followed by ultrasonication was used as a method of preparation and Quality-by-Design (QbD) was utilized to optimize ABE-SLNs.
Results: The optimized ABE-SLNs consist of Precirol-ATO5 as a lipid and Brij-58 as a surfactant. The particle size, PDI value, and zeta potential of the optimized formulation were 170.4 ± 0.49 nm, 0.25 ± 0.014, and -26.4 ± 0.1 mV, respectively. It also showed sustained release behavior and a high entrapment efficiency of 79.96%. ABE-SLNs exhibited enhanced anticancer activity in the MDA-MB-231 and T47D breast cancer cell lines compared to pure ABE. In Caco-2 human colonic cell lines, ABE-SLNs also showed increased cellular uptake.
Conclusion: The use of QbD to achieve high entrapment efficiency and sustained release in ABE-SLNs, coupled with enhanced cellular uptake and cytotoxicity, represents a novel approach that could set a new standard for nanoparticle-based drug delivery systems.
期刊介绍:
Delivering therapeutics in a way that is right for the patient - safe, painless, reliable, targeted, efficient and cost effective - is the fundamental aim of scientists working in this area. Correspondingly, this evolving field has already yielded a diversity of delivery methods, including injectors, controlled release formulations, drug eluting implants and transdermal patches. Rapid technological advances and the desire to improve the efficacy and safety profile of existing medications by specific targeting to the site of action, combined with the drive to improve patient compliance, continue to fuel rapid research progress. Furthermore, the emergence of cell-based therapeutics and biopharmaceuticals such as proteins, peptides and nucleotides presents scientists with new and exciting challenges for the application of therapeutic delivery science and technology. Successful delivery strategies increasingly rely upon collaboration across a diversity of fields, including biology, chemistry, pharmacology, nanotechnology, physiology, materials science and engineering. Therapeutic Delivery recognizes the importance of this diverse research platform and encourages the publication of articles that reflect the highly interdisciplinary nature of the field. In a highly competitive industry, Therapeutic Delivery provides the busy researcher with a forum for the rapid publication of original research and critical reviews of all the latest relevant and significant developments, and focuses on how the technological, pharmacological, clinical and physiological aspects come together to successfully deliver modern therapeutics to patients. The journal delivers this essential information in concise, at-a-glance article formats that are readily accessible to the full spectrum of therapeutic delivery researchers.