[Improvement of catalytic activity and thermostability of glucose oxidase from Aspergillus heteromorphus].

Q4 Biochemistry, Genetics and Molecular Biology
Shanglin Yu, Qiao Zhou, Honghai Zhang, Yingguo Bai, Huiying Luo, Xiaojun Yang, Bin Yao
{"title":"[Improvement of catalytic activity and thermostability of glucose oxidase from <i>Aspergillus heteromorphus</i>].","authors":"Shanglin Yu, Qiao Zhou, Honghai Zhang, Yingguo Bai, Huiying Luo, Xiaojun Yang, Bin Yao","doi":"10.13345/j.cjb.240458","DOIUrl":null,"url":null,"abstract":"<p><p>Glucose oxidase (GOD) is an oxygen-consuming dehydrogenase that can catalyze the production of gluconic acid hydrogen peroxide from glucose, and its specific mechanism of action makes it promising for applications, while the low catalytic activity and poor thermostability have become the main factors limiting the industrial application of this enzyme. In this study, we used the glucose oxidase <i>At</i>GOD reported with the best thermostability as the source sequence for phylogenetic analysis to obtain the GOD with excellent performance. Six genes were screened and successfully synthesized for functional validation. Among them, the glucose oxidase <i>Ah</i>GODB derived from <i>Aspergillus heteromorphus</i> was expressed in <i>Pichia pastoris</i> and showed better thermostability and catalytic activity, with an optimal temperature of 40 ℃, a specific activity of 112.2 U/mg, and a relative activity of 47% after 5 min of treatment at 70 ℃. To improve its activity and thermal stability, we constructed several mutants by directed evolution combined with rational design. Compared with the original enzyme, the mutant T72R/A153P showcased the optimum temperature increasing from 40 to 50 ℃, the specific activity increasing from 112.2 U/mg to 166.1 U/mg, and the relative activity after treatment at 70 ℃ for 30 min increasing from 0% to 33%. In conclusion, the glucose oxidase mutants obtained in this study have improved catalytic activity and thermostability, and have potential for application.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 1","pages":"296-307"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13345/j.cjb.240458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Glucose oxidase (GOD) is an oxygen-consuming dehydrogenase that can catalyze the production of gluconic acid hydrogen peroxide from glucose, and its specific mechanism of action makes it promising for applications, while the low catalytic activity and poor thermostability have become the main factors limiting the industrial application of this enzyme. In this study, we used the glucose oxidase AtGOD reported with the best thermostability as the source sequence for phylogenetic analysis to obtain the GOD with excellent performance. Six genes were screened and successfully synthesized for functional validation. Among them, the glucose oxidase AhGODB derived from Aspergillus heteromorphus was expressed in Pichia pastoris and showed better thermostability and catalytic activity, with an optimal temperature of 40 ℃, a specific activity of 112.2 U/mg, and a relative activity of 47% after 5 min of treatment at 70 ℃. To improve its activity and thermal stability, we constructed several mutants by directed evolution combined with rational design. Compared with the original enzyme, the mutant T72R/A153P showcased the optimum temperature increasing from 40 to 50 ℃, the specific activity increasing from 112.2 U/mg to 166.1 U/mg, and the relative activity after treatment at 70 ℃ for 30 min increasing from 0% to 33%. In conclusion, the glucose oxidase mutants obtained in this study have improved catalytic activity and thermostability, and have potential for application.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sheng wu gong cheng xue bao = Chinese journal of biotechnology
Sheng wu gong cheng xue bao = Chinese journal of biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
1.50
自引率
0.00%
发文量
298
期刊介绍: Chinese Journal of Biotechnology (Chinese edition) , sponsored by the Institute of Microbiology, Chinese Academy of Sciences and the Chinese Society for Microbiology, is a peer-reviewed international journal. The journal is cited by many scientific databases , such as Chemical Abstract (CA), Biology Abstract (BA), MEDLINE, Russian Digest , Chinese Scientific Citation Index (CSCI), Chinese Journal Citation Report (CJCR), and Chinese Academic Journal (CD version). The Journal publishes new discoveries, techniques and developments in genetic engineering, cell engineering, enzyme engineering, biochemical engineering, tissue engineering, bioinformatics, biochips and other fields of biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信