{"title":"Roughness Impact of Piezoelectric Dental Scaler on Two Distinct Flowable Composite Filling Materials.","authors":"Omer Birkan Agrali","doi":"10.3791/67446","DOIUrl":null,"url":null,"abstract":"<p><p>Dental ultrasonic scalers are commonly employed in periodontal treatment; however, their ability to roughen tooth surfaces is a worry since roughness may increase plaque production, a key cause of periodontal disease. This research studied the influence of a piezoelectric ultrasonic scaler on the roughness of two distinct flowable composite filling materials. To do this, 10 disc-shaped samples were generated from each of the two flowable composite materials. After standardized polishing, samples were submerged in water for 24 h before the first surface examination using electron microscopy and profilometry. The ultrasonic scaler was applied to a specified location of each sample for 60 s under water cooling and regulated force. Post-scaler surface parameters were again examined. Following the application of the scaler, both composite materials exhibited a notable increase in surface roughness, as determined by profilometry (p < 0.01). Additionally, the observed surface roughness was also qualitatively visualized with scanning electron microscopy. While initial roughness levels were comparable across the two composites (p = 0.143) after scaler application, no substantial discrepancy in surface texture was noticed between them (p = 0.684). The use of a high-power piezoelectric ultrasonic scaler on routinely used flowable composite restorations might generate considerable surface roughness, possibly leading to increased plaque accumulation. Nevertheless, it might be postulated that nanohybrid flowable composite materials having conventional monomer ingredients may demonstrate comparable surface alterations within the limitations of this experiment.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 215","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67446","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Dental ultrasonic scalers are commonly employed in periodontal treatment; however, their ability to roughen tooth surfaces is a worry since roughness may increase plaque production, a key cause of periodontal disease. This research studied the influence of a piezoelectric ultrasonic scaler on the roughness of two distinct flowable composite filling materials. To do this, 10 disc-shaped samples were generated from each of the two flowable composite materials. After standardized polishing, samples were submerged in water for 24 h before the first surface examination using electron microscopy and profilometry. The ultrasonic scaler was applied to a specified location of each sample for 60 s under water cooling and regulated force. Post-scaler surface parameters were again examined. Following the application of the scaler, both composite materials exhibited a notable increase in surface roughness, as determined by profilometry (p < 0.01). Additionally, the observed surface roughness was also qualitatively visualized with scanning electron microscopy. While initial roughness levels were comparable across the two composites (p = 0.143) after scaler application, no substantial discrepancy in surface texture was noticed between them (p = 0.684). The use of a high-power piezoelectric ultrasonic scaler on routinely used flowable composite restorations might generate considerable surface roughness, possibly leading to increased plaque accumulation. Nevertheless, it might be postulated that nanohybrid flowable composite materials having conventional monomer ingredients may demonstrate comparable surface alterations within the limitations of this experiment.
期刊介绍:
JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.