Experimental research on resource utilization of iron tailings powder in backfilling engineering.

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Guo-Hua Yuan, Yun-Shi Yao, Pu-Gang Zhang, Wei-Guo Hao, Kun-Peng Huang, Jin-Li, Qing-Fang Shang
{"title":"Experimental research on resource utilization of iron tailings powder in backfilling engineering.","authors":"Guo-Hua Yuan, Yun-Shi Yao, Pu-Gang Zhang, Wei-Guo Hao, Kun-Peng Huang, Jin-Li, Qing-Fang Shang","doi":"10.1038/s41598-025-85546-6","DOIUrl":null,"url":null,"abstract":"<p><p>The goaf formed by mining and other activities is prone to safety hazards. Preparing high-quality and low-cost solidified iron tailings powder (SITP) is an important way to ensure backfill quality and eliminate safety hazards. Using iron tailings powder near the goaf of in Shanxi, comparative experiments were conducted to evaluate the the flowability, stone rate, strength, and water stability of newly mixed SITP under different types and dosages of curing agent, and mixing methods. The results show that under the premise of keeping the fluidity constant, the strength of the ITP slurry increases with the increase of the curing agent content; At the same strength, the water consumption significantly affects the fluidity; When using 8%~16% different curing agent dosage, the expansion degree is 280 mm ~ 600 mm, the wet density is 1.9 g/cm<sup>3</sup> ~ 2.1 g/cm<sup>3</sup>, the 28d strength after curing is 1.4 MPa ~ 3.7 MPa, and the stone rate is greater than 92%; The ITP slurry prepared by vibration mixing with a mixing time of 120 s and the amount of curing agent at 8% meets the engineering application requirements of 7d strength of 0.6 MPa and expansion of 250 mm. The research shows that the iron tailings powder slurry prepared by vibration mixing has high strength after solidification, and it is a new way of resource utilization of iron tailings powder with large consumption and good economy to be used for goaf backfilling.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"3562"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775150/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-85546-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The goaf formed by mining and other activities is prone to safety hazards. Preparing high-quality and low-cost solidified iron tailings powder (SITP) is an important way to ensure backfill quality and eliminate safety hazards. Using iron tailings powder near the goaf of in Shanxi, comparative experiments were conducted to evaluate the the flowability, stone rate, strength, and water stability of newly mixed SITP under different types and dosages of curing agent, and mixing methods. The results show that under the premise of keeping the fluidity constant, the strength of the ITP slurry increases with the increase of the curing agent content; At the same strength, the water consumption significantly affects the fluidity; When using 8%~16% different curing agent dosage, the expansion degree is 280 mm ~ 600 mm, the wet density is 1.9 g/cm3 ~ 2.1 g/cm3, the 28d strength after curing is 1.4 MPa ~ 3.7 MPa, and the stone rate is greater than 92%; The ITP slurry prepared by vibration mixing with a mixing time of 120 s and the amount of curing agent at 8% meets the engineering application requirements of 7d strength of 0.6 MPa and expansion of 250 mm. The research shows that the iron tailings powder slurry prepared by vibration mixing has high strength after solidification, and it is a new way of resource utilization of iron tailings powder with large consumption and good economy to be used for goaf backfilling.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信