{"title":"DNA spontaneously wrapping around a histone core prefers negative supercoiling: A Brownian dynamics study.","authors":"Chunhong Long, Hongqiong Liang, Biao Wan","doi":"10.1371/journal.pcbi.1012362","DOIUrl":null,"url":null,"abstract":"<p><p>In eukaryotes, DNA achieves a highly compact structure primarily due to its winding around the histone cores. The nature wrapping of DNA around histone core form a 1.7 left-handed superhelical turns, contributing to negative supercoiling in chromatin. During transcription, negative supercoils generated behind the polymerase during transcription may play a role in triggering nucleosome reassembly. To elucidate how supercoils influence the dynamics of wrapping of DNA around the histone cores, we developed a novel model to simulate the intricate interplay between DNA and histone. Our simulations reveal that both positively and negatively supercoiled DNAs are capable of wrapping around histone cores to adopt the nucleosome conformation. Notably, our findings confirm a strong preference for negative supercoiled DNA during nucleosome wrapping, and reveal that the both of the negative writhe and twist are beneficial to the formation of the DNA wrapping around histone. Additionally, the simulations of the multiple nucleosomes on the same DNA template indicate that the nucleosome tends to assemble in proximity to the original nucleosome. This advancement in understanding the spontaneous formation of nucleosomes may offer insights into the complex dynamics of chromatin assembly and the fundamental mechanisms governing the structure and function of chromatin.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 1","pages":"e1012362"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11793753/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012362","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In eukaryotes, DNA achieves a highly compact structure primarily due to its winding around the histone cores. The nature wrapping of DNA around histone core form a 1.7 left-handed superhelical turns, contributing to negative supercoiling in chromatin. During transcription, negative supercoils generated behind the polymerase during transcription may play a role in triggering nucleosome reassembly. To elucidate how supercoils influence the dynamics of wrapping of DNA around the histone cores, we developed a novel model to simulate the intricate interplay between DNA and histone. Our simulations reveal that both positively and negatively supercoiled DNAs are capable of wrapping around histone cores to adopt the nucleosome conformation. Notably, our findings confirm a strong preference for negative supercoiled DNA during nucleosome wrapping, and reveal that the both of the negative writhe and twist are beneficial to the formation of the DNA wrapping around histone. Additionally, the simulations of the multiple nucleosomes on the same DNA template indicate that the nucleosome tends to assemble in proximity to the original nucleosome. This advancement in understanding the spontaneous formation of nucleosomes may offer insights into the complex dynamics of chromatin assembly and the fundamental mechanisms governing the structure and function of chromatin.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.