Abdullah Hayajneh, Erchin Serpedin, Mohammad Shaqfeh, Graeme Glass, Mitchell A Stotland
{"title":"Adapting a style based generative adversarial network to create images depicting cleft lip deformity.","authors":"Abdullah Hayajneh, Erchin Serpedin, Mohammad Shaqfeh, Graeme Glass, Mitchell A Stotland","doi":"10.1038/s41598-025-86588-6","DOIUrl":null,"url":null,"abstract":"<p><p>Training a machine learning system to evaluate any type of facial deformity is impeded by the scarcity of large datasets of high-quality, ethics board-approved patient images. We have built a deep learning-based cleft lip generator called CleftGAN designed to produce an almost unlimited number of high-fidelity facsimiles of cleft lip facial images with wide variation. A transfer learning protocol testing different versions of StyleGAN as the base model was undertaken. Data augmentation maneuvers permitted input of merely 514 frontal photographs of cleft-affected faces adapted to a base model of 70,000 normal faces. The Frechet Inception Distance was used to measure the similarity of the newly generated facial images to the cleft training dataset. Perceptual Path Length and the novel Divergence Index of Normality measures also assessed the performance of the novel image generator. CleftGAN generates vast numbers of unique faces depicting a wide range of cleft lip deformity with variation of ethnic background. Performance metrics demonstrated a high similarity of the generated images to our training dataset and a smooth, semantically valid interpolation of images through the transfer learning process. The distribution of normality for the training and generated images were highly comparable. CleftGAN is a novel instrument that generates an almost boundless number of realistic facial images depicting cleft lip. This tool promises to become a valuable resource for the development of machine learning models to objectively evaluate facial form and the outcomes of surgical reconstruction.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"3614"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-86588-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Training a machine learning system to evaluate any type of facial deformity is impeded by the scarcity of large datasets of high-quality, ethics board-approved patient images. We have built a deep learning-based cleft lip generator called CleftGAN designed to produce an almost unlimited number of high-fidelity facsimiles of cleft lip facial images with wide variation. A transfer learning protocol testing different versions of StyleGAN as the base model was undertaken. Data augmentation maneuvers permitted input of merely 514 frontal photographs of cleft-affected faces adapted to a base model of 70,000 normal faces. The Frechet Inception Distance was used to measure the similarity of the newly generated facial images to the cleft training dataset. Perceptual Path Length and the novel Divergence Index of Normality measures also assessed the performance of the novel image generator. CleftGAN generates vast numbers of unique faces depicting a wide range of cleft lip deformity with variation of ethnic background. Performance metrics demonstrated a high similarity of the generated images to our training dataset and a smooth, semantically valid interpolation of images through the transfer learning process. The distribution of normality for the training and generated images were highly comparable. CleftGAN is a novel instrument that generates an almost boundless number of realistic facial images depicting cleft lip. This tool promises to become a valuable resource for the development of machine learning models to objectively evaluate facial form and the outcomes of surgical reconstruction.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.