Robust terahertz on-chip topological pathway with single-mode and linear dispersion.

IF 3.2 2区 物理与天体物理 Q2 OPTICS
Optics express Pub Date : 2025-01-27 DOI:10.1364/OE.545620
Xusheng He, Lan Wang, Zitong Huang, Chaoming Xia, Xin Gao, Ziqiang Yang, Yaxin Zhang
{"title":"Robust terahertz on-chip topological pathway with single-mode and linear dispersion.","authors":"Xusheng He, Lan Wang, Zitong Huang, Chaoming Xia, Xin Gao, Ziqiang Yang, Yaxin Zhang","doi":"10.1364/OE.545620","DOIUrl":null,"url":null,"abstract":"<p><p>Terahertz on-chip pathway is crucial for next-generation wireless communication, terahertz integrated circuits, and high-speed chip interconnections, yet its development is impeded by issues like channel crosstalk and disordered scattering. In this study, we propose and experimentally demonstrate a terahertz on-chip topological pathway that exhibits exceptional transmission robustness, unaffected by structural curvature. The pathway is constructed using a subwavelength structure that combines the benefits of topological properties, such as broadband single-mode transmission and linear dispersion, with the field localization effects of periodic metal structures. By integrating topological protection into radio frequency circuits through metal microstructures, the device maintains efficient terahertz wave transmission even in the presence of scattering or structural defects while minimizing signal interference. These findings hold significant potential for applications in radio frequency device transmission and chip interconnection, particularly within the terahertz frequency range.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"33 2","pages":"3350-3360"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.545620","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Terahertz on-chip pathway is crucial for next-generation wireless communication, terahertz integrated circuits, and high-speed chip interconnections, yet its development is impeded by issues like channel crosstalk and disordered scattering. In this study, we propose and experimentally demonstrate a terahertz on-chip topological pathway that exhibits exceptional transmission robustness, unaffected by structural curvature. The pathway is constructed using a subwavelength structure that combines the benefits of topological properties, such as broadband single-mode transmission and linear dispersion, with the field localization effects of periodic metal structures. By integrating topological protection into radio frequency circuits through metal microstructures, the device maintains efficient terahertz wave transmission even in the presence of scattering or structural defects while minimizing signal interference. These findings hold significant potential for applications in radio frequency device transmission and chip interconnection, particularly within the terahertz frequency range.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信