Programmable photonic latch memory.

IF 3.2 2区 物理与天体物理 Q2 OPTICS
Optics express Pub Date : 2025-01-27 DOI:10.1364/OE.536535
Farshid Ashtiani
{"title":"Programmable photonic latch memory.","authors":"Farshid Ashtiani","doi":"10.1364/OE.536535","DOIUrl":null,"url":null,"abstract":"<p><p>Significant advancements in integrated photonics have enabled high-speed and energy efficient systems for various applications, from data communications and high-performance computing to medical diagnosis, sensing, and ranging. However, data storage in these systems has been dominated by electronic memories that in addition to signal conversion between optical and electrical domains, necessitates conversion between analog to digital domains and electrical data movement between processor and memory that reduce the speed and energy efficiency. To date, scalable optical memory with optical control has remained an open problem. Here, we report an integrated photonic set-reset latch as a fundamental optical static memory unit based on universal optical logic gates. As a proof of concept, experimental implementation of the universal logic gates and realistic simulation of the latch are demonstrated on a programmable silicon photonic platform. Optical set, reset, and complementary outputs, scalability to a large number of memory units via the independent latch supply light, and compatibility with wavelength division multiplexing scheme and different photonic platforms enable more efficient and lower latency optical processing systems.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"33 2","pages":"3501-3510"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.536535","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Significant advancements in integrated photonics have enabled high-speed and energy efficient systems for various applications, from data communications and high-performance computing to medical diagnosis, sensing, and ranging. However, data storage in these systems has been dominated by electronic memories that in addition to signal conversion between optical and electrical domains, necessitates conversion between analog to digital domains and electrical data movement between processor and memory that reduce the speed and energy efficiency. To date, scalable optical memory with optical control has remained an open problem. Here, we report an integrated photonic set-reset latch as a fundamental optical static memory unit based on universal optical logic gates. As a proof of concept, experimental implementation of the universal logic gates and realistic simulation of the latch are demonstrated on a programmable silicon photonic platform. Optical set, reset, and complementary outputs, scalability to a large number of memory units via the independent latch supply light, and compatibility with wavelength division multiplexing scheme and different photonic platforms enable more efficient and lower latency optical processing systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信