Machine learning prediction of hepatic encephalopathy for long-term survival after transjugular intrahepatic portosystemic shunt in acute variceal bleeding.

IF 4.3 3区 医学 Q1 GASTROENTEROLOGY & HEPATOLOGY
De-Jia Liu, Li-Xuan Jia, Feng-Xia Zeng, Wei-Xiong Zeng, Geng-Geng Qin, Qi-Feng Peng, Qing Tan, Hui Zeng, Zhong-Yue Ou, Li-Zi Kun, Jian-Bo Zhao, Wei-Guo Chen
{"title":"Machine learning prediction of hepatic encephalopathy for long-term survival after transjugular intrahepatic portosystemic shunt in acute variceal bleeding.","authors":"De-Jia Liu, Li-Xuan Jia, Feng-Xia Zeng, Wei-Xiong Zeng, Geng-Geng Qin, Qi-Feng Peng, Qing Tan, Hui Zeng, Zhong-Yue Ou, Li-Zi Kun, Jian-Bo Zhao, Wei-Guo Chen","doi":"10.3748/wjg.v31.i4.100401","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Transjugular intrahepatic portosystemic shunt (TIPS) is an effective intervention for managing complications of portal hypertension, particularly acute variceal bleeding (AVB). While effective in reducing portal pressure and preventing rebleeding, TIPS is associated with a considerable risk of overt hepatic encephalopathy (OHE), a complication that significantly elevates mortality rates.</p><p><strong>Aim: </strong>To develop a machine learning (ML) model to predict OHE occurrence post-TIPS in patients with AVB using a 5-year dataset.</p><p><strong>Methods: </strong>This retrospective single-center study included 218 patients with AVB who underwent TIPS. The dataset was divided into training (70%) and testing (30%) sets. Critical features were identified using embedded methods and recursive feature elimination. Three ML algorithms-random forest, extreme gradient boosting, and logistic regression-were validated <i>via</i> 10-fold cross-validation. SHapley Additive exPlanations analysis was employed to interpret the model's predictions. Survival analysis was conducted using Kaplan-Meier curves and stepwise Cox regression analysis to compare overall survival (OS) between patients with and without OHE.</p><p><strong>Results: </strong>The median OS of the study cohort was 47.83 ± 22.95 months. Among the models evaluated, logistic regression demonstrated the highest performance with an area under the curve (AUC) of 0.825. Key predictors identified were Child-Pugh score, age, and portal vein thrombosis. Kaplan-Meier analysis revealed that patients without OHE had a significantly longer OS (<i>P</i> = 0.005). The 5-year survival rate was 78.4%, with an OHE incidence of 15.1%. Both actual OHE status and predicted OHE value were significant predictors in each Cox model, with model-predicted OHE achieving an AUC of 88.1 in survival prediction.</p><p><strong>Conclusion: </strong>The ML model accurately predicts post-TIPS OHE and outperforms traditional models, supporting its use in improving outcomes in patients with AVB.</p>","PeriodicalId":23778,"journal":{"name":"World Journal of Gastroenterology","volume":"31 4","pages":"100401"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11718638/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Gastroenterology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3748/wjg.v31.i4.100401","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Transjugular intrahepatic portosystemic shunt (TIPS) is an effective intervention for managing complications of portal hypertension, particularly acute variceal bleeding (AVB). While effective in reducing portal pressure and preventing rebleeding, TIPS is associated with a considerable risk of overt hepatic encephalopathy (OHE), a complication that significantly elevates mortality rates.

Aim: To develop a machine learning (ML) model to predict OHE occurrence post-TIPS in patients with AVB using a 5-year dataset.

Methods: This retrospective single-center study included 218 patients with AVB who underwent TIPS. The dataset was divided into training (70%) and testing (30%) sets. Critical features were identified using embedded methods and recursive feature elimination. Three ML algorithms-random forest, extreme gradient boosting, and logistic regression-were validated via 10-fold cross-validation. SHapley Additive exPlanations analysis was employed to interpret the model's predictions. Survival analysis was conducted using Kaplan-Meier curves and stepwise Cox regression analysis to compare overall survival (OS) between patients with and without OHE.

Results: The median OS of the study cohort was 47.83 ± 22.95 months. Among the models evaluated, logistic regression demonstrated the highest performance with an area under the curve (AUC) of 0.825. Key predictors identified were Child-Pugh score, age, and portal vein thrombosis. Kaplan-Meier analysis revealed that patients without OHE had a significantly longer OS (P = 0.005). The 5-year survival rate was 78.4%, with an OHE incidence of 15.1%. Both actual OHE status and predicted OHE value were significant predictors in each Cox model, with model-predicted OHE achieving an AUC of 88.1 in survival prediction.

Conclusion: The ML model accurately predicts post-TIPS OHE and outperforms traditional models, supporting its use in improving outcomes in patients with AVB.

求助全文
约1分钟内获得全文 求助全文
来源期刊
World Journal of Gastroenterology
World Journal of Gastroenterology 医学-胃肠肝病学
CiteScore
7.80
自引率
4.70%
发文量
464
审稿时长
2.4 months
期刊介绍: The primary aims of the WJG are to improve diagnostic, therapeutic and preventive modalities and the skills of clinicians and to guide clinical practice in gastroenterology and hepatology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信