Bicarbonate use reduces the photorespiration in Ottelia alismoides adapting to the CO2-fluctuated aquatic systems.

IF 5.4 2区 生物学 Q1 PLANT SCIENCES
Pengpeng Li, Zuying Liao, Bo Zhang, Liyan Yin, Wei Li, Hong Sheng Jiang
{"title":"Bicarbonate use reduces the photorespiration in Ottelia alismoides adapting to the CO<sub>2</sub>-fluctuated aquatic systems.","authors":"Pengpeng Li, Zuying Liao, Bo Zhang, Liyan Yin, Wei Li, Hong Sheng Jiang","doi":"10.1111/ppl.70085","DOIUrl":null,"url":null,"abstract":"<p><p>Underwater CO<sub>2</sub> concentration fluctuates extremely in natural water bodies. Under low CO<sub>2</sub>, the unique CO<sub>2</sub> concentrating mechanism in aquatic plants, bicarbonate use, can suppress photorespiration. However, it remains unknown (1) to what extent bicarbonate use reduces photorespiration, (2) how exactly photorespiration varies between bicarbonate-users and CO<sub>2</sub>-obligate users under CO<sub>2</sub>-fluctuated environments, and (3) what are differences in Rubisco characteristics between these two types of aquatic plants. In the present study, the bicarbonate user Ottelia alismoides and its phylogenetically close CO<sub>2</sub>-obligate user Blyxa japonica were chosen to answer these questions. The results showed that bicarbonate use saved ~13% carbon loss under low CO<sub>2</sub> via decreasing photorespiration in O. alismoides. Through bicarbonate use, the photorespiration of O. alismoides was kept stable both under high and low underwater CO<sub>2</sub> concentrations, while the photorespiration significantly increased in the CO<sub>2</sub>-obligate user B. japonica under low CO<sub>2</sub>. However, B. japonica showed a significantly higher photosynthesis rate than O. alsimoides when CO<sub>2</sub> was sufficient. These differences could be related to the kinetic characteristics of Rubisco showing a higher carboxylation turnover rate (Kcat) in B. japonica, and the similar affinity to CO<sub>2</sub> (Kc) and specificity factor (Sc/o) in these two species that might be determined by the variation of six amino acid residuals in Rubisco large subunit sequences, especially the site 281 (A vs. S) and 282 (H vs. F). All these differences in photorespiration and kinetic characteristics of Rubisco could explain the distribution patterns of bicarbonate users and CO<sub>2</sub>-obligate users in the field.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70085"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70085","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Underwater CO2 concentration fluctuates extremely in natural water bodies. Under low CO2, the unique CO2 concentrating mechanism in aquatic plants, bicarbonate use, can suppress photorespiration. However, it remains unknown (1) to what extent bicarbonate use reduces photorespiration, (2) how exactly photorespiration varies between bicarbonate-users and CO2-obligate users under CO2-fluctuated environments, and (3) what are differences in Rubisco characteristics between these two types of aquatic plants. In the present study, the bicarbonate user Ottelia alismoides and its phylogenetically close CO2-obligate user Blyxa japonica were chosen to answer these questions. The results showed that bicarbonate use saved ~13% carbon loss under low CO2 via decreasing photorespiration in O. alismoides. Through bicarbonate use, the photorespiration of O. alismoides was kept stable both under high and low underwater CO2 concentrations, while the photorespiration significantly increased in the CO2-obligate user B. japonica under low CO2. However, B. japonica showed a significantly higher photosynthesis rate than O. alsimoides when CO2 was sufficient. These differences could be related to the kinetic characteristics of Rubisco showing a higher carboxylation turnover rate (Kcat) in B. japonica, and the similar affinity to CO2 (Kc) and specificity factor (Sc/o) in these two species that might be determined by the variation of six amino acid residuals in Rubisco large subunit sequences, especially the site 281 (A vs. S) and 282 (H vs. F). All these differences in photorespiration and kinetic characteristics of Rubisco could explain the distribution patterns of bicarbonate users and CO2-obligate users in the field.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信