Accurate deep learning based method for real-time directly modulated laser modeling.

IF 3.2 2区 物理与天体物理 Q2 OPTICS
Optics express Pub Date : 2025-01-27 DOI:10.1364/OE.549604
Qifan Zhang, Shi Jia, Tianhao Zhang, Jinlong Yu
{"title":"Accurate deep learning based method for real-time directly modulated laser modeling.","authors":"Qifan Zhang, Shi Jia, Tianhao Zhang, Jinlong Yu","doi":"10.1364/OE.549604","DOIUrl":null,"url":null,"abstract":"<p><p>Rate equations and numerical simulations relying on complex mathematical and physical principles are typically used to model directly modulated lasers (DMLs) but have difficulty simulating dynamic DML behavior in real-time under varying conditions due to their high complexity. Here, we introduce a data-driven deep learning method to model DMLs, aiming to achieve high accuracy with reduced computational complexity. This approach employs bidirectional long short-term memory (BiLSTM) enhanced by advanced feature recalibration and nonlinear fitting techniques. The result is compared with LSTM, standard BiLSTM, and recurrent neural network (RNN) architectures. The proposed model obtains the best results for the evaluated metrics. The satisfactory output waveforms and acceptable spectra indicate that the proposed model offers an accurate and real-time method to model DMLs.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"33 2","pages":"2360-2375"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.549604","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Rate equations and numerical simulations relying on complex mathematical and physical principles are typically used to model directly modulated lasers (DMLs) but have difficulty simulating dynamic DML behavior in real-time under varying conditions due to their high complexity. Here, we introduce a data-driven deep learning method to model DMLs, aiming to achieve high accuracy with reduced computational complexity. This approach employs bidirectional long short-term memory (BiLSTM) enhanced by advanced feature recalibration and nonlinear fitting techniques. The result is compared with LSTM, standard BiLSTM, and recurrent neural network (RNN) architectures. The proposed model obtains the best results for the evaluated metrics. The satisfactory output waveforms and acceptable spectra indicate that the proposed model offers an accurate and real-time method to model DMLs.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics express
Optics express 物理-光学
CiteScore
6.60
自引率
15.80%
发文量
5182
审稿时长
2.1 months
期刊介绍: Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信