{"title":"Error analysis and spectral reconstruction of an infrared static miniature interferometric spectrometer.","authors":"Yupeng Chen, Jinguang Lv, Baixuan Zhao, Yingze Zhao, Kaifeng Zheng, Yuxin Qin, Weibiao Wang, Haitao Nie, Wei Yue, Jingqiu Liang","doi":"10.1364/OE.547797","DOIUrl":null,"url":null,"abstract":"<p><p>Scientific-grade spectrometers with high hyperspectral resolution and high spectral accuracy are desirable in miniaturized optical systems to maintain stable and real-time spectral sampling. Fourier transform spectrometers that utilize high-precision moving mirrors generally struggle to enhance their miniaturization and stable real-time performance. A static infrared spectral measurement method is proposed that uses micro/nano-optical devices as the core of static interference and lightweight imaging. The use of micro/nano step mirrors allows for the instantaneous sampling of spectra. By employing an array of micro/nano lenses, interference imaging for each spectral channel can be accomplished. The spectrometer's all-static micro/nano-optical structure results in a reduction in volume and weight of more than half. Enhanced precision in design and fabrication is achieved through optical error analysis via a full-linkage optical field transmission model. An image edge detection-assisted spectral inversion algorithm is proposed, and the sampling stability and reconstruction accuracy are verified. The repeatability accuracy of interference intensity sampling surpasses 2%, and the peak accuracy of the reconstructed spectrum exceeds the resolution.</p>","PeriodicalId":19691,"journal":{"name":"Optics express","volume":"33 2","pages":"3637-3653"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/OE.547797","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Scientific-grade spectrometers with high hyperspectral resolution and high spectral accuracy are desirable in miniaturized optical systems to maintain stable and real-time spectral sampling. Fourier transform spectrometers that utilize high-precision moving mirrors generally struggle to enhance their miniaturization and stable real-time performance. A static infrared spectral measurement method is proposed that uses micro/nano-optical devices as the core of static interference and lightweight imaging. The use of micro/nano step mirrors allows for the instantaneous sampling of spectra. By employing an array of micro/nano lenses, interference imaging for each spectral channel can be accomplished. The spectrometer's all-static micro/nano-optical structure results in a reduction in volume and weight of more than half. Enhanced precision in design and fabrication is achieved through optical error analysis via a full-linkage optical field transmission model. An image edge detection-assisted spectral inversion algorithm is proposed, and the sampling stability and reconstruction accuracy are verified. The repeatability accuracy of interference intensity sampling surpasses 2%, and the peak accuracy of the reconstructed spectrum exceeds the resolution.
期刊介绍:
Optics Express is the all-electronic, open access journal for optics providing rapid publication for peer-reviewed articles that emphasize scientific and technology innovations in all aspects of optics and photonics.