Characteristics of Tylvalosin Tartrate Enteric Amorphous Pellets Prepared by Liquid Layering.

IF 3.5 3区 医学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Haoran Wang, Lin Han, Han Zeng, Mengyao Yu, Tian Yin, Yu Zhang, Haibing He, Jingxin Gou, Xing Tang
{"title":"Characteristics of Tylvalosin Tartrate Enteric Amorphous Pellets Prepared by Liquid Layering.","authors":"Haoran Wang, Lin Han, Han Zeng, Mengyao Yu, Tian Yin, Yu Zhang, Haibing He, Jingxin Gou, Xing Tang","doi":"10.1007/s11095-025-03821-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Tylvalosin Tartrate (TAT), a new-generation macrolide antibiotic, undergoes significant degradation in the stomach and in vivo rapid elimination upon oral administration, resulting in poor bioavailability. This study developed TAT enteric amorphous pellets by liquid layering (TAT/EAP-LL) with pH-sensitive and burst release characteristics, to enhance drug stability in the stomach and concentration enrichment in the duodenum.</p><p><strong>Methods: </strong>The drug loading layer, isolation layer and enteric layer were formed on the surface of the blank core pellets. Investigation into the characteristics of TAT/EAP-LL revealed that stable amorphous solid dispersions in the drug loading layer were formed by liquid layering. Then, DSC analysis confirmed that triethyl citrate significantly improved the film-forming properties of Methacrylic-ethyl acrylate copolymer. Additionally, TAT/EAP-LL was confirmed to exist in the amorphous state by DSC、PXRD and PLM.</p><p><strong>Results: </strong>In vitro, TAT/EAP-LL demonstrated a similar 4.07% release within 2 h at pH 1.0 as TAT enteric pellets (TAT/EP-LL) and a much faster burst release at pH 6.8, with complete release within 15 min. In vivo, the oral bioavailability of TAT/EAP-LL was improved to 1.71 times compared to commercial formulations and 1.47 times compared to TAT/EP-LL.</p><p><strong>Conclusion: </strong>This study offers a novel platform for the enhanced oral delivery of TAT and proposes effective formulation strategies for pulsatile drug delivery.</p>","PeriodicalId":20027,"journal":{"name":"Pharmaceutical Research","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11095-025-03821-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Tylvalosin Tartrate (TAT), a new-generation macrolide antibiotic, undergoes significant degradation in the stomach and in vivo rapid elimination upon oral administration, resulting in poor bioavailability. This study developed TAT enteric amorphous pellets by liquid layering (TAT/EAP-LL) with pH-sensitive and burst release characteristics, to enhance drug stability in the stomach and concentration enrichment in the duodenum.

Methods: The drug loading layer, isolation layer and enteric layer were formed on the surface of the blank core pellets. Investigation into the characteristics of TAT/EAP-LL revealed that stable amorphous solid dispersions in the drug loading layer were formed by liquid layering. Then, DSC analysis confirmed that triethyl citrate significantly improved the film-forming properties of Methacrylic-ethyl acrylate copolymer. Additionally, TAT/EAP-LL was confirmed to exist in the amorphous state by DSC、PXRD and PLM.

Results: In vitro, TAT/EAP-LL demonstrated a similar 4.07% release within 2 h at pH 1.0 as TAT enteric pellets (TAT/EP-LL) and a much faster burst release at pH 6.8, with complete release within 15 min. In vivo, the oral bioavailability of TAT/EAP-LL was improved to 1.71 times compared to commercial formulations and 1.47 times compared to TAT/EP-LL.

Conclusion: This study offers a novel platform for the enhanced oral delivery of TAT and proposes effective formulation strategies for pulsatile drug delivery.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceutical Research
Pharmaceutical Research 医学-化学综合
CiteScore
6.60
自引率
5.40%
发文量
276
审稿时长
3.4 months
期刊介绍: Pharmaceutical Research, an official journal of the American Association of Pharmaceutical Scientists, is committed to publishing novel research that is mechanism-based, hypothesis-driven and addresses significant issues in drug discovery, development and regulation. Current areas of interest include, but are not limited to: -(pre)formulation engineering and processing- computational biopharmaceutics- drug delivery and targeting- molecular biopharmaceutics and drug disposition (including cellular and molecular pharmacology)- pharmacokinetics, pharmacodynamics and pharmacogenetics. Research may involve nonclinical and clinical studies, and utilize both in vitro and in vivo approaches. Studies on small drug molecules, pharmaceutical solid materials (including biomaterials, polymers and nanoparticles) biotechnology products (including genes, peptides, proteins and vaccines), and genetically engineered cells are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信