Bárbara Schmitz-Abecassis, Ivo Cornelissen, Robin Jacobs, Jasmin A Kuhn-Keller, Linda Dirven, Martin Taphoorn, Matthias J P van Osch, Johan A F Koekkoek, Jeroen de Bresser
{"title":"Extension of T<sub>2</sub> Hyperintense Areas in Patients With a Glioma: A Comparison Between High-Quality 7 T MRI and Clinical Scans.","authors":"Bárbara Schmitz-Abecassis, Ivo Cornelissen, Robin Jacobs, Jasmin A Kuhn-Keller, Linda Dirven, Martin Taphoorn, Matthias J P van Osch, Johan A F Koekkoek, Jeroen de Bresser","doi":"10.1002/nbm.5316","DOIUrl":null,"url":null,"abstract":"<p><p>Gliomas are highly heterogeneous and often include a nonenhancing component that is hyperintense on T<sub>2</sub> weighted MRI. This can often not be distinguished from secondary gliosis and surrounding edema. We hypothesized that the extent of these T<sub>2</sub> hyperintense areas can more accurately be determined on high-quality 7 T MRI scans. We investigated the extension, volume, and complexity (shape) of T<sub>2</sub> hyperintense areas in patients with glioma on high-quality 7 T MRI scans compared to clinical MRI scans. T<sub>2</sub> hyperintense areas of 28 patients were visually compared and manually segmented on 7 T MRI and corresponding clinical (1.5 T/3 T) MRI scans, and the volume and shape markers were calculated and subsequently compared between scans. We showed extension of the T<sub>2</sub> hyperintense areas via the corpus callosum to the opposite hemisphere in four patients on the 7 T scans that was not visible on the clinical scan. Furthermore, we found a significantly larger volume of the T<sub>2</sub> hyperintense areas on the 7 T scans compared with the clinical scans (7 T scans: 28 mL [12.5-59.1]; clinical scans: 11.9 mL [11.8-56.6]; p = 0.01). We also found a higher complexity of the T<sub>2</sub> hyperintense areas on the 7 T scans compared with the clinical scans (convexity, solidity, concavity index and fractal dimension [p < 0.001]). Our study suggests that high-quality 7 T MRI scans may show more detail on the exact extension, size, and complexity of the T<sub>2</sub> hyperintense areas in patients with a glioma. This information could aid in more accurate planning of treatment, such as surgery and radiotherapy.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":"38 3","pages":"e5316"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775408/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.5316","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Gliomas are highly heterogeneous and often include a nonenhancing component that is hyperintense on T2 weighted MRI. This can often not be distinguished from secondary gliosis and surrounding edema. We hypothesized that the extent of these T2 hyperintense areas can more accurately be determined on high-quality 7 T MRI scans. We investigated the extension, volume, and complexity (shape) of T2 hyperintense areas in patients with glioma on high-quality 7 T MRI scans compared to clinical MRI scans. T2 hyperintense areas of 28 patients were visually compared and manually segmented on 7 T MRI and corresponding clinical (1.5 T/3 T) MRI scans, and the volume and shape markers were calculated and subsequently compared between scans. We showed extension of the T2 hyperintense areas via the corpus callosum to the opposite hemisphere in four patients on the 7 T scans that was not visible on the clinical scan. Furthermore, we found a significantly larger volume of the T2 hyperintense areas on the 7 T scans compared with the clinical scans (7 T scans: 28 mL [12.5-59.1]; clinical scans: 11.9 mL [11.8-56.6]; p = 0.01). We also found a higher complexity of the T2 hyperintense areas on the 7 T scans compared with the clinical scans (convexity, solidity, concavity index and fractal dimension [p < 0.001]). Our study suggests that high-quality 7 T MRI scans may show more detail on the exact extension, size, and complexity of the T2 hyperintense areas in patients with a glioma. This information could aid in more accurate planning of treatment, such as surgery and radiotherapy.
胶质瘤是高度不均匀的,通常包括非增强成分,在T2加权MRI上呈高强度。这通常不能与继发性胶质瘤和周围水肿区分开。我们假设通过高质量的7t MRI扫描可以更准确地确定这些T2高信号区域的范围。我们研究了高质量的7t MRI扫描与临床MRI扫描相比,胶质瘤患者T2高强度区域的扩展、体积和复杂性(形状)。在7 T MRI和相应的临床MRI (1.5 T/3 T)扫描上,对28例患者的T2高信号区域进行视觉比较和人工分割,计算体积和形状标记,并在扫描间进行比较。我们在4例患者的7t扫描中发现T2高信号区通过胼胝体延伸到对侧半球,这在临床扫描中是不可见的。此外,我们发现与临床扫描相比,7次T扫描的T2高信号区体积明显更大(7次T扫描:28 mL [12.5-59.1];临床扫描:11.9 mL [11.8-56.6];p = 0.01)。我们还发现,与临床扫描相比,7t扫描上T2高信号区域的复杂性更高(胶质瘤患者的凸度、实度、凹度指数和分形维数[p 2])。这些信息有助于更准确地规划治疗,如手术和放疗。
期刊介绍:
NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.