Effect of Elevated Temperature on Compressive Strength of MICCP and EICCP Biocemented Mortar.

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Rishabh Junwale, Snigdha P Bhutange, Madhuwanti Latkar
{"title":"Effect of Elevated Temperature on Compressive Strength of MICCP and EICCP Biocemented Mortar.","authors":"Rishabh Junwale, Snigdha P Bhutange, Madhuwanti Latkar","doi":"10.1007/s12033-025-01375-y","DOIUrl":null,"url":null,"abstract":"<p><p>Recently biocementation has got attention of many researchers worldwide as one of the most potent techniques for sustainable construction. Several studies have been carried out worldwide on biocementation by urea hydrolysis. Biocementation by bacterially induced calcium carbonate precipitation by different bacterial species has been among the most widely researched areas in this field. Biocementation has proved efficient in enhancing the strength and durability of cement-based materials. However, no significant work has been carried out to determine the performance of biocemented specimens at elevated temperatures. This study primarily focuses on the effects of high temperatures (300, 450, and 600 °C) on the compressive strength of two types of biocemented specimens prepared by using ureolytic bacteria and rich in urease watermelon seeds. The motive behind testing these two types is to know how the enzyme induced or microbially induced react to temperature elevation. Also, the effect of different cooling techniques (viz., natural cooling, water spray cooling and fire extinguishing foam spray cooling) were studied. These cooling techniques were selected so as to check which cooling technique should be preferred in case of fire situation in a cement-based structure. Results show that biocemented specimens can perform very good up to the temperature 300 °C as compared to control specimens in terms of compressive strength. At 450 °C temperature, there is no significant difference in compressive strengths of control and biocemented specimens. When the specimens were subjected to 600 °C, biocemented specimens showed lower strength than control specimens at the same temperature due to denser microstructures. Thus, biocemented cement mortar should not be used in reactors, muffles and ovens where temperature would go above 450 °C.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-025-01375-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Recently biocementation has got attention of many researchers worldwide as one of the most potent techniques for sustainable construction. Several studies have been carried out worldwide on biocementation by urea hydrolysis. Biocementation by bacterially induced calcium carbonate precipitation by different bacterial species has been among the most widely researched areas in this field. Biocementation has proved efficient in enhancing the strength and durability of cement-based materials. However, no significant work has been carried out to determine the performance of biocemented specimens at elevated temperatures. This study primarily focuses on the effects of high temperatures (300, 450, and 600 °C) on the compressive strength of two types of biocemented specimens prepared by using ureolytic bacteria and rich in urease watermelon seeds. The motive behind testing these two types is to know how the enzyme induced or microbially induced react to temperature elevation. Also, the effect of different cooling techniques (viz., natural cooling, water spray cooling and fire extinguishing foam spray cooling) were studied. These cooling techniques were selected so as to check which cooling technique should be preferred in case of fire situation in a cement-based structure. Results show that biocemented specimens can perform very good up to the temperature 300 °C as compared to control specimens in terms of compressive strength. At 450 °C temperature, there is no significant difference in compressive strengths of control and biocemented specimens. When the specimens were subjected to 600 °C, biocemented specimens showed lower strength than control specimens at the same temperature due to denser microstructures. Thus, biocemented cement mortar should not be used in reactors, muffles and ovens where temperature would go above 450 °C.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biotechnology
Molecular Biotechnology 医学-生化与分子生物学
CiteScore
4.10
自引率
3.80%
发文量
165
审稿时长
6 months
期刊介绍: Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信