fMRI data acquisition and analysis for task-free, anesthetized rats.

IF 13.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Roël M Vrooman, Monica van den Berg, Gabriel Desrosiers-Gregoire, Wessel A van Engelenburg, Marie E Galteau, Sung-Ho Lee, Andor Veltien, David A Barrière, Diana Cash, M Mallar Chakravarty, Gabriel A Devenyi, Alessandro Gozzi, Olli Gröhn, Andreas Hess, Judith R Homberg, Ileana O Jelescu, Georgios A Keliris, Tom Scheenen, Yen-Yu Ian Shih, Marleen Verhoye, Claire Wary, Marcel Zwiers, Joanes Grandjean
{"title":"fMRI data acquisition and analysis for task-free, anesthetized rats.","authors":"Roël M Vrooman, Monica van den Berg, Gabriel Desrosiers-Gregoire, Wessel A van Engelenburg, Marie E Galteau, Sung-Ho Lee, Andor Veltien, David A Barrière, Diana Cash, M Mallar Chakravarty, Gabriel A Devenyi, Alessandro Gozzi, Olli Gröhn, Andreas Hess, Judith R Homberg, Ileana O Jelescu, Georgios A Keliris, Tom Scheenen, Yen-Yu Ian Shih, Marleen Verhoye, Claire Wary, Marcel Zwiers, Joanes Grandjean","doi":"10.1038/s41596-024-01110-y","DOIUrl":null,"url":null,"abstract":"<p><p>Templates for the acquisition of large datasets such as the Human Connectome Project guide the neuroimaging community to reproducible data acquisition and scientific rigor. By contrast, small animal neuroimaging often relies on laboratory-specific protocols, which limit cross-study comparisons. The establishment of broadly validated protocols may facilitate the acquisition of large datasets, which are essential for uncovering potentially small effects often seen in functional MRI (fMRI) studies. Here, we outline a procedure for the acquisition of fMRI datasets in rats and describe animal handling, MRI sequence parameters, data conversion, preprocessing, quality control and data analysis. The procedure is designed to be generalizable across laboratories, has been validated by using datasets across 20 research centers with different scanners and field strengths ranging from 4.7 to 17.2 T and can be used in studies in which it is useful to compare functional connectivity measures across an extensive range of datasets. The MRI procedure requires 1 h per rat to complete and can be carried out by users with limited expertise in rat handling, MRI and data processing.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01110-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Templates for the acquisition of large datasets such as the Human Connectome Project guide the neuroimaging community to reproducible data acquisition and scientific rigor. By contrast, small animal neuroimaging often relies on laboratory-specific protocols, which limit cross-study comparisons. The establishment of broadly validated protocols may facilitate the acquisition of large datasets, which are essential for uncovering potentially small effects often seen in functional MRI (fMRI) studies. Here, we outline a procedure for the acquisition of fMRI datasets in rats and describe animal handling, MRI sequence parameters, data conversion, preprocessing, quality control and data analysis. The procedure is designed to be generalizable across laboratories, has been validated by using datasets across 20 research centers with different scanners and field strengths ranging from 4.7 to 17.2 T and can be used in studies in which it is useful to compare functional connectivity measures across an extensive range of datasets. The MRI procedure requires 1 h per rat to complete and can be carried out by users with limited expertise in rat handling, MRI and data processing.

无任务麻醉大鼠的fMRI数据采集与分析。
获取大型数据集的模板,如人类连接组项目,指导神经成像社区进行可重复的数据获取和科学严谨性。相比之下,小动物神经成像通常依赖于实验室特定的协议,这限制了交叉研究的比较。建立广泛验证的方案可能有助于获取大型数据集,这对于发现功能MRI (fMRI)研究中常见的潜在小影响至关重要。在这里,我们概述了获取大鼠fMRI数据集的程序,并描述了动物处理、MRI序列参数、数据转换、预处理、质量控制和数据分析。该程序旨在跨实验室推广,已通过使用20个研究中心的不同扫描仪和场强范围从4.7到17.2 T的数据集进行验证,可用于在广泛的数据集范围内比较功能连接测量的研究。MRI检查每只大鼠需要1小时才能完成,可以由在大鼠处理、MRI和数据处理方面专业知识有限的用户进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信