Isolation of Soil Microorganisms Using iChip Technology.

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Leah K Gauthier, Adam Foster, Brian D Wagner, Christopher W Kirby
{"title":"Isolation of Soil Microorganisms Using iChip Technology.","authors":"Leah K Gauthier, Adam Foster, Brian D Wagner, Christopher W Kirby","doi":"10.3791/67426","DOIUrl":null,"url":null,"abstract":"<p><p>The iChip isolation technique uses an in-situ isolation device that increases the cultivability of previously unculturable microorganisms. Microorganisms are an important source of novel chemistries and potentially bioactive molecules. However, only 1% of environmental microorganisms can be cultured using conventional laboratory methods. With the rise in antimicrobial resistance, finding new drugs to combat infections and diseases is of foremost importance, and a critical method to finding new molecules is the discovery of new microorganisms. By incubating colonies of soil microorganisms in the wells of a 96-well plate, sealed with a semipermeable membrane and incubated on top of soil, the microbes are in contact with water and growth factors from the soil, allowing for the isolation of novel microbes in a laboratory setting. After a period of domestication in an iChip, microorganisms can potentially be subcultured onto conventional media and used for further study. This device is valuable to bioactive molecule discovery and soil microbiome research and has been used previously in both applications.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 215","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67426","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The iChip isolation technique uses an in-situ isolation device that increases the cultivability of previously unculturable microorganisms. Microorganisms are an important source of novel chemistries and potentially bioactive molecules. However, only 1% of environmental microorganisms can be cultured using conventional laboratory methods. With the rise in antimicrobial resistance, finding new drugs to combat infections and diseases is of foremost importance, and a critical method to finding new molecules is the discovery of new microorganisms. By incubating colonies of soil microorganisms in the wells of a 96-well plate, sealed with a semipermeable membrane and incubated on top of soil, the microbes are in contact with water and growth factors from the soil, allowing for the isolation of novel microbes in a laboratory setting. After a period of domestication in an iChip, microorganisms can potentially be subcultured onto conventional media and used for further study. This device is valuable to bioactive molecule discovery and soil microbiome research and has been used previously in both applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信