Screening a 681-membered yeast collection for the secretion of proteins with antifungal activity

IF 4.5 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Alicia Maciá Valero , Fatemehalsadat Tabatabaeifar , Sonja Billerbeck
{"title":"Screening a 681-membered yeast collection for the secretion of proteins with antifungal activity","authors":"Alicia Maciá Valero ,&nbsp;Fatemehalsadat Tabatabaeifar ,&nbsp;Sonja Billerbeck","doi":"10.1016/j.nbt.2025.01.008","DOIUrl":null,"url":null,"abstract":"<div><div>Fungal pathogens pose a threat to human health and food security. Few antifungals are available and resistance to all has been reported. Novel strategies to control plant and human pathogens as well as food spoilers are urgently required. Environmental yeasts provide a functionally diverse, yet underexploited potential for fungal control based on their natural competition via the secretion of proteins and other small molecules such as iron chelators, volatile organic compounds or biosurfactants. However, there is a lack of standardized workflows to systematically access application-relevant yeast-based compounds and understand their molecular functioning. Towards this goal, we developed a workflow to identify and characterize yeast isolates that are active against spoilage yeasts and relevant human and plant pathogens, herein focusing on discovering yeasts that secrete antifungal proteins. The workflow includes the classification of the secreted molecules and cross-comparison of their antifungal capacity using an independent synthetic calibrant. Our workflow delivered a collection of 681 yeasts of which 212 isolates (31 %) displayed antagonism against at least one target strain. While 57.5 % of the active yeasts showed iron-depended antagonism, likely due to pulcherrimin-like iron chelators, 31.7 % secreted antifungal proteins. Those yeast candidates clustered within twelve OTUs, showed narrow and broad target spectra, and several showed a broad pH and temperature activity profile. Given the tools for yeast biotechnology and protein engineering available, our collection can serve as a rich starting point for genetic and molecular characterization of the various antifungal phenotypes, their mode of action and their future exploitation.</div></div>","PeriodicalId":19190,"journal":{"name":"New biotechnology","volume":"86 ","pages":"Pages 55-72"},"PeriodicalIF":4.5000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1871678425000081","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Fungal pathogens pose a threat to human health and food security. Few antifungals are available and resistance to all has been reported. Novel strategies to control plant and human pathogens as well as food spoilers are urgently required. Environmental yeasts provide a functionally diverse, yet underexploited potential for fungal control based on their natural competition via the secretion of proteins and other small molecules such as iron chelators, volatile organic compounds or biosurfactants. However, there is a lack of standardized workflows to systematically access application-relevant yeast-based compounds and understand their molecular functioning. Towards this goal, we developed a workflow to identify and characterize yeast isolates that are active against spoilage yeasts and relevant human and plant pathogens, herein focusing on discovering yeasts that secrete antifungal proteins. The workflow includes the classification of the secreted molecules and cross-comparison of their antifungal capacity using an independent synthetic calibrant. Our workflow delivered a collection of 681 yeasts of which 212 isolates (31 %) displayed antagonism against at least one target strain. While 57.5 % of the active yeasts showed iron-depended antagonism, likely due to pulcherrimin-like iron chelators, 31.7 % secreted antifungal proteins. Those yeast candidates clustered within twelve OTUs, showed narrow and broad target spectra, and several showed a broad pH and temperature activity profile. Given the tools for yeast biotechnology and protein engineering available, our collection can serve as a rich starting point for genetic and molecular characterization of the various antifungal phenotypes, their mode of action and their future exploitation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
New biotechnology
New biotechnology 生物-生化研究方法
CiteScore
11.40
自引率
1.90%
发文量
77
审稿时长
1 months
期刊介绍: New Biotechnology is the official journal of the European Federation of Biotechnology (EFB) and is published bimonthly. It covers both the science of biotechnology and its surrounding political, business and financial milieu. The journal publishes peer-reviewed basic research papers, authoritative reviews, feature articles and opinions in all areas of biotechnology. It reflects the full diversity of current biotechnology science, particularly those advances in research and practice that open opportunities for exploitation of knowledge, commercially or otherwise, together with news, discussion and comment on broader issues of general interest and concern. The outlook is fully international. The scope of the journal includes the research, industrial and commercial aspects of biotechnology, in areas such as: Healthcare and Pharmaceuticals; Food and Agriculture; Biofuels; Genetic Engineering and Molecular Biology; Genomics and Synthetic Biology; Nanotechnology; Environment and Biodiversity; Biocatalysis; Bioremediation; Process engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信