Pyrroloquinoline quinone-loaded coaxial nanofibers prevent oxidative stress after spinal cord injury.

IF 4.6 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Sara Ibrahim, Mohammed Ismail, Taghrid Abdelrahman, Mona Sharkawy, Ahmed Abdellatif, Nageh K Allam
{"title":"Pyrroloquinoline quinone-loaded coaxial nanofibers prevent oxidative stress after spinal cord injury.","authors":"Sara Ibrahim, Mohammed Ismail, Taghrid Abdelrahman, Mona Sharkawy, Ahmed Abdellatif, Nageh K Allam","doi":"10.1039/d4na00885e","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress plays a major role in the secondary injury of the spinal cord tissue due to the high lipid content of nervous tissue. In the present study, coaxial nanofibers were loaded with the natural antioxidant pyrroloquinoline quinone (PQQ) and used as an implantable drug-delivery system and a scaffold post-SCI. The obtained data show that the concentration of NO and the activity of inducible nitric oxide synthase (iNOS) were significantly (<i>P</i> < 0.05) increased in the spinal cord injury (SCI) group. These levels were significantly decreased following treatment with nanofibers/PQQ. Implantation of nanofibers/PQQ resulted in a significant (<i>P</i> < 0.05) drop in the level of malondialdehyde (MDA) compared to the SCI group. The application of nanofibers loaded with PQQ after SCI caused a significant (<i>P</i> < 0.05) elevation of superoxide dismutase (SOD) and catalase (CAT) activity in the spinal cord tissue. The present work shows the protective role of coaxial nanofibers loaded with PQQ against oxidative stress in spinal cord injury. The reversal of oxidative stress with PQQ can lead to better outcomes following spinal cord injury.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11770590/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4na00885e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Oxidative stress plays a major role in the secondary injury of the spinal cord tissue due to the high lipid content of nervous tissue. In the present study, coaxial nanofibers were loaded with the natural antioxidant pyrroloquinoline quinone (PQQ) and used as an implantable drug-delivery system and a scaffold post-SCI. The obtained data show that the concentration of NO and the activity of inducible nitric oxide synthase (iNOS) were significantly (P < 0.05) increased in the spinal cord injury (SCI) group. These levels were significantly decreased following treatment with nanofibers/PQQ. Implantation of nanofibers/PQQ resulted in a significant (P < 0.05) drop in the level of malondialdehyde (MDA) compared to the SCI group. The application of nanofibers loaded with PQQ after SCI caused a significant (P < 0.05) elevation of superoxide dismutase (SOD) and catalase (CAT) activity in the spinal cord tissue. The present work shows the protective role of coaxial nanofibers loaded with PQQ against oxidative stress in spinal cord injury. The reversal of oxidative stress with PQQ can lead to better outcomes following spinal cord injury.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Advances
Nanoscale Advances Multiple-
CiteScore
8.00
自引率
2.10%
发文量
461
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信