Advancing burn wound healing with an innovative in situ gelling probiotic microparticle formulation employing quality by design (QbD) principles.

IF 2.4 3区 医学 Q2 DERMATOLOGY
Fatemeh Moraffah, Nasrin Samadi, Mohammad Abdollahi, Seyed Naser Ostad, Roshanak Dolatabadi, Maryam Pirouzzadeh, Alireza Vatanara
{"title":"Advancing burn wound healing with an innovative in situ gelling probiotic microparticle formulation employing quality by design (QbD) principles.","authors":"Fatemeh Moraffah, Nasrin Samadi, Mohammad Abdollahi, Seyed Naser Ostad, Roshanak Dolatabadi, Maryam Pirouzzadeh, Alireza Vatanara","doi":"10.1016/j.jtv.2025.100860","DOIUrl":null,"url":null,"abstract":"<p><p>Scientists investigated probiotic-containing dressings to address the challenges associated with burn injuries, namely infection and antimicrobial resistance. The present investigation sought to evaluate the impact of innovative probiotic-loaded microparticles with in situ gelling characteristics on infected burns. The strain, Lactiplantibacillus plantarum, was selected due to its demonstrated wound-healing potential. Subsequently, a formulation was designed to sustain the growth capacity of probiotics. Polymers with a high moisture absorption capacity were exclusively used to avoid powder dispersion from wounds. The formulation was stabilized through the reduction of water content using the spray-drying process. The ideal composition was identified by analyzing the influence of the spray-drying inlet temperature, polymer type, and concentrations on probiotic viability, process efficiency, swelling ratio, and flow properties of powders. Morphological analysis showed the presence of microparticles with significant exchangeable surface areas. The rheological properties of the formulation demonstrated its ability to withstand high temperatures and mechanical stress. Moreover, FTIR and DCS spectra provided evidence of interconnection between the polymers. Examination of the growth profiles of both formulated and free probiotics revealed a consistent growth rate and an extended lag time. Animal studies have shown that the optimal microparticles exhibited superior efficacy compared to the control groups across all parameters and displayed enhanced effectiveness against Pseudomonas aeruginosa. The proposed delivery method, with its simple application and prevention of normal flora transmission, may have the potential to improve burn wound infection treatments.</p>","PeriodicalId":17392,"journal":{"name":"Journal of tissue viability","volume":"34 2","pages":"100860"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of tissue viability","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jtv.2025.100860","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Scientists investigated probiotic-containing dressings to address the challenges associated with burn injuries, namely infection and antimicrobial resistance. The present investigation sought to evaluate the impact of innovative probiotic-loaded microparticles with in situ gelling characteristics on infected burns. The strain, Lactiplantibacillus plantarum, was selected due to its demonstrated wound-healing potential. Subsequently, a formulation was designed to sustain the growth capacity of probiotics. Polymers with a high moisture absorption capacity were exclusively used to avoid powder dispersion from wounds. The formulation was stabilized through the reduction of water content using the spray-drying process. The ideal composition was identified by analyzing the influence of the spray-drying inlet temperature, polymer type, and concentrations on probiotic viability, process efficiency, swelling ratio, and flow properties of powders. Morphological analysis showed the presence of microparticles with significant exchangeable surface areas. The rheological properties of the formulation demonstrated its ability to withstand high temperatures and mechanical stress. Moreover, FTIR and DCS spectra provided evidence of interconnection between the polymers. Examination of the growth profiles of both formulated and free probiotics revealed a consistent growth rate and an extended lag time. Animal studies have shown that the optimal microparticles exhibited superior efficacy compared to the control groups across all parameters and displayed enhanced effectiveness against Pseudomonas aeruginosa. The proposed delivery method, with its simple application and prevention of normal flora transmission, may have the potential to improve burn wound infection treatments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of tissue viability
Journal of tissue viability DERMATOLOGY-NURSING
CiteScore
3.80
自引率
16.00%
发文量
110
审稿时长
>12 weeks
期刊介绍: The Journal of Tissue Viability is the official publication of the Tissue Viability Society and is a quarterly journal concerned with all aspects of the occurrence and treatment of wounds, ulcers and pressure sores including patient care, pain, nutrition, wound healing, research, prevention, mobility, social problems and management. The Journal particularly encourages papers covering skin and skin wounds but will consider articles that discuss injury in any tissue. Articles that stress the multi-professional nature of tissue viability are especially welcome. We seek to encourage new authors as well as well-established contributors to the field - one aim of the journal is to enable all participants in tissue viability to share information with colleagues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信