{"title":"Probing the magnetic ground state of stretched diamond lattices NdTaO4 and NdNbO4: Impact of spin-orbit coupling and crystal electric field.","authors":"Jogendra Kumar, Vinod Kumar Solet, Dheeraj Ranaut, Sudhir Kumar Pandey, Kaustav Mukherjee","doi":"10.1088/1361-648X/adaf66","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic systems, wherein competing degree of freedoms arising from spin orbit coupling and crystal electric field lead to non-trivial magnetic ground states, remains in the forefront of research in condensed matter physics. Here, we present a comprehensive investigation on three-dimensional rare-earth based spin systems NdTaO4 and NdNbO4, where the Nd ions sit on a stretched diamond lattice. No signatures of long-range ordering and spin freezing are observed down to 1.8 K, in both cases. The low temperature Curie-Weiss analysis indicate towards the dominance of antiferromagnetic interactions between Nd3+ spins. A three-level crystal electric field model clearly explain the nature of susceptibility curve. At low temperatures, heat capacity data exhibit two-level Schottky anomaly associated with ground state Kramer's doublet. Additionally, the low temperature magnetic behaviour is found reliable to effective spin (Jeff) = ½ ground state, suggesting the presence of quantum fluctuations in both cases. First-principle calculations reveal a significant value of orbital moment with inclusion of spin orbit coupling and reinforce the Jeff = ½ nature of the ground state.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/adaf66","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic systems, wherein competing degree of freedoms arising from spin orbit coupling and crystal electric field lead to non-trivial magnetic ground states, remains in the forefront of research in condensed matter physics. Here, we present a comprehensive investigation on three-dimensional rare-earth based spin systems NdTaO4 and NdNbO4, where the Nd ions sit on a stretched diamond lattice. No signatures of long-range ordering and spin freezing are observed down to 1.8 K, in both cases. The low temperature Curie-Weiss analysis indicate towards the dominance of antiferromagnetic interactions between Nd3+ spins. A three-level crystal electric field model clearly explain the nature of susceptibility curve. At low temperatures, heat capacity data exhibit two-level Schottky anomaly associated with ground state Kramer's doublet. Additionally, the low temperature magnetic behaviour is found reliable to effective spin (Jeff) = ½ ground state, suggesting the presence of quantum fluctuations in both cases. First-principle calculations reveal a significant value of orbital moment with inclusion of spin orbit coupling and reinforce the Jeff = ½ nature of the ground state.
期刊介绍:
Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.