Robust undulatory locomotion through neuromechanical adjustments in a dissipative medium.

IF 3.7 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Journal of The Royal Society Interface Pub Date : 2025-01-01 Epub Date: 2025-01-29 DOI:10.1098/rsif.2024.0688
Kenta Ishimoto, Clément Moreau, Johann Herault
{"title":"Robust undulatory locomotion through neuromechanical adjustments in a dissipative medium.","authors":"Kenta Ishimoto, Clément Moreau, Johann Herault","doi":"10.1098/rsif.2024.0688","DOIUrl":null,"url":null,"abstract":"<p><p>Dissipative environments are ubiquitous in nature, from microscopic swimmers in low-Reynolds-number fluids to macroscopic animals in frictional media. In this study, we consider a mathematical model of a slender elastic locomotor with an internal rhythmic neural pattern generator to examine various undulatory locomotion such as <i>Caenorhabditis elegans</i> swimming and crawling behaviours. By using local mechanical load as mechanosensory feedback, we have found that undulatory locomotion robustly emerges in different rheological media. This progressive behaviour is then characterized as a global attractor through dynamical systems analysis with a Poincaré section. Furthermore, by controlling the mechanosensation, we were able to design the dynamical systems to manoeuvre with progressive, reverse and turning motions as well as apparently random, complex behaviours, reminiscent of those experimentally observed in <i>C. elegans</i>. The mechanisms found in this study, together with our dynamical systems methodology, are useful for deciphering complex animal adaptive behaviours and designing robots capable of locomotion in a wide range of dissipative environments.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 222","pages":"20240688"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775665/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0688","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Dissipative environments are ubiquitous in nature, from microscopic swimmers in low-Reynolds-number fluids to macroscopic animals in frictional media. In this study, we consider a mathematical model of a slender elastic locomotor with an internal rhythmic neural pattern generator to examine various undulatory locomotion such as Caenorhabditis elegans swimming and crawling behaviours. By using local mechanical load as mechanosensory feedback, we have found that undulatory locomotion robustly emerges in different rheological media. This progressive behaviour is then characterized as a global attractor through dynamical systems analysis with a Poincaré section. Furthermore, by controlling the mechanosensation, we were able to design the dynamical systems to manoeuvre with progressive, reverse and turning motions as well as apparently random, complex behaviours, reminiscent of those experimentally observed in C. elegans. The mechanisms found in this study, together with our dynamical systems methodology, are useful for deciphering complex animal adaptive behaviours and designing robots capable of locomotion in a wide range of dissipative environments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信