{"title":"Robust undulatory locomotion through neuromechanical adjustments in a dissipative medium.","authors":"Kenta Ishimoto, Clément Moreau, Johann Herault","doi":"10.1098/rsif.2024.0688","DOIUrl":null,"url":null,"abstract":"<p><p>Dissipative environments are ubiquitous in nature, from microscopic swimmers in low-Reynolds-number fluids to macroscopic animals in frictional media. In this study, we consider a mathematical model of a slender elastic locomotor with an internal rhythmic neural pattern generator to examine various undulatory locomotion such as <i>Caenorhabditis elegans</i> swimming and crawling behaviours. By using local mechanical load as mechanosensory feedback, we have found that undulatory locomotion robustly emerges in different rheological media. This progressive behaviour is then characterized as a global attractor through dynamical systems analysis with a Poincaré section. Furthermore, by controlling the mechanosensation, we were able to design the dynamical systems to manoeuvre with progressive, reverse and turning motions as well as apparently random, complex behaviours, reminiscent of those experimentally observed in <i>C. elegans</i>. The mechanisms found in this study, together with our dynamical systems methodology, are useful for deciphering complex animal adaptive behaviours and designing robots capable of locomotion in a wide range of dissipative environments.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 222","pages":"20240688"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775665/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0688","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Dissipative environments are ubiquitous in nature, from microscopic swimmers in low-Reynolds-number fluids to macroscopic animals in frictional media. In this study, we consider a mathematical model of a slender elastic locomotor with an internal rhythmic neural pattern generator to examine various undulatory locomotion such as Caenorhabditis elegans swimming and crawling behaviours. By using local mechanical load as mechanosensory feedback, we have found that undulatory locomotion robustly emerges in different rheological media. This progressive behaviour is then characterized as a global attractor through dynamical systems analysis with a Poincaré section. Furthermore, by controlling the mechanosensation, we were able to design the dynamical systems to manoeuvre with progressive, reverse and turning motions as well as apparently random, complex behaviours, reminiscent of those experimentally observed in C. elegans. The mechanisms found in this study, together with our dynamical systems methodology, are useful for deciphering complex animal adaptive behaviours and designing robots capable of locomotion in a wide range of dissipative environments.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.