Daniel Stocks, Amy Thomas, Adam Finn, Leon Danon, Ellen Brooks-Pollock
{"title":"Mechanistic models of humoral kinetics following COVID-19 vaccination.","authors":"Daniel Stocks, Amy Thomas, Adam Finn, Leon Danon, Ellen Brooks-Pollock","doi":"10.1098/rsif.2024.0445","DOIUrl":null,"url":null,"abstract":"<p><p>COVID-19 vaccine programmes must account for variable immune responses and waning protection. Existing descriptions of antibody responses to COVID-19 vaccination convey limited information about the mechanisms of antibody production and maintenance. We describe antibody dynamics after COVID-19 vaccination with two biologically motivated mathematical models. We fit the models using Markov chain Monte Carlo to seroprevalence data from 14 602 uninfected individuals in England between May 2020 and September 2022. We analyse the effect of age, vaccine type, number of doses and the interval between doses on antibody production and longevity. We find evidence that individuals over 35 years old twice vaccinated with ChAdOx1-S generate a persistent antibody response suggestive of long-lived plasma cell induction. We also find that plasmablast productive capacity is greater in: younger people than older people (≤4.5-fold change in point estimates); people vaccinated with two doses than one dose (≤12-fold change); and people vaccinated with BNT162b2 than ChAdOx1-S (≤440-fold change). We find the half-life of an antibody to be 23-106 days. Routinely collected seroprevalence data are invaluable for characterizing within-host mechanisms of antibody production and persistence. Extended sampling and linking seroprevalence data to outcomes would enable conclusions about how humoral kinetics protect against disease.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"22 222","pages":"20240445"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775660/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0445","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
COVID-19 vaccine programmes must account for variable immune responses and waning protection. Existing descriptions of antibody responses to COVID-19 vaccination convey limited information about the mechanisms of antibody production and maintenance. We describe antibody dynamics after COVID-19 vaccination with two biologically motivated mathematical models. We fit the models using Markov chain Monte Carlo to seroprevalence data from 14 602 uninfected individuals in England between May 2020 and September 2022. We analyse the effect of age, vaccine type, number of doses and the interval between doses on antibody production and longevity. We find evidence that individuals over 35 years old twice vaccinated with ChAdOx1-S generate a persistent antibody response suggestive of long-lived plasma cell induction. We also find that plasmablast productive capacity is greater in: younger people than older people (≤4.5-fold change in point estimates); people vaccinated with two doses than one dose (≤12-fold change); and people vaccinated with BNT162b2 than ChAdOx1-S (≤440-fold change). We find the half-life of an antibody to be 23-106 days. Routinely collected seroprevalence data are invaluable for characterizing within-host mechanisms of antibody production and persistence. Extended sampling and linking seroprevalence data to outcomes would enable conclusions about how humoral kinetics protect against disease.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.