Adaptive protein synthesis in genetic models of copper deficiency and childhood neurodegeneration.

IF 3.1 3区 生物学 Q3 CELL BIOLOGY
Molecular Biology of the Cell Pub Date : 2025-03-01 Epub Date: 2025-01-29 DOI:10.1091/mbc.E24-11-0512
Alicia R Lane, Noah E Scher, Shatabdi Bhattacharjee, Stephanie A Zlatic, Anne M Roberts, Avanti Gokhale, Kaela S Singleton, Duc M Duong, Mike McKenna, William L Liu, Alina Baiju, Felix G Rivera Moctezuma, Tommy Tran, Atit A Patel, Lauren B Clayton, Michael J Petris, Levi B Wood, Anupam Patgiri, Alysia D Vrailas-Mortimer, Daniel N Cox, Blaine R Roberts, Erica Werner, Victor Faundez
{"title":"Adaptive protein synthesis in genetic models of copper deficiency and childhood neurodegeneration.","authors":"Alicia R Lane, Noah E Scher, Shatabdi Bhattacharjee, Stephanie A Zlatic, Anne M Roberts, Avanti Gokhale, Kaela S Singleton, Duc M Duong, Mike McKenna, William L Liu, Alina Baiju, Felix G Rivera Moctezuma, Tommy Tran, Atit A Patel, Lauren B Clayton, Michael J Petris, Levi B Wood, Anupam Patgiri, Alysia D Vrailas-Mortimer, Daniel N Cox, Blaine R Roberts, Erica Werner, Victor Faundez","doi":"10.1091/mbc.E24-11-0512","DOIUrl":null,"url":null,"abstract":"<p><p>Rare inherited diseases caused by mutations in the copper transporters <i>SLC31A1</i> (CTR1) or <i>ATP7A</i> induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that produced a metabolic shift favoring glycolysis over oxidative phosphorylation. Proteomic and transcriptomic analysis of CTR1 knockout (KO) cells revealed simultaneous up-regulation of mTORC1 and S6K signaling and reduced PERK signaling. Patterns of gene and protein expression and pharmacogenomics show increased activation of the mTORC1-S6K pathway as a prosurvival mechanism, ultimately resulting in increased protein synthesis. Spatial transcriptomic profiling of <i>Atp7a<sup>flx/Y</sup> :: Vil1<sup>Cre/+</sup></i> mice identified up-regulated protein synthesis machinery and mTORC1-S6K pathway genes in copper-deficient Purkinje neurons in the cerebellum. Genetic epistasis experiments in <i>Drosophila</i> demonstrated that copper deficiency dendritic phenotypes in class IV neurons are improved or rescued by increased S6k expression or 4E-BP1 (Thor) RNAi, while epidermis phenotypes are exacerbated by Akt, S6k, or raptor RNAi. Overall, we demonstrate that increased mTORC1-S6K pathway activation and protein synthesis is an adaptive mechanism by which neuronal cells respond to copper deficiency.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"ar33"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11974963/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E24-11-0512","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Rare inherited diseases caused by mutations in the copper transporters SLC31A1 (CTR1) or ATP7A induce copper deficiency in the brain, causing seizures and neurodegeneration in infancy through poorly understood mechanisms. Here, we used multiple model systems to characterize the molecular mechanisms by which neuronal cells respond to copper deficiency. Targeted deletion of CTR1 in neuroblastoma cells produced copper deficiency that produced a metabolic shift favoring glycolysis over oxidative phosphorylation. Proteomic and transcriptomic analysis of CTR1 knockout (KO) cells revealed simultaneous up-regulation of mTORC1 and S6K signaling and reduced PERK signaling. Patterns of gene and protein expression and pharmacogenomics show increased activation of the mTORC1-S6K pathway as a prosurvival mechanism, ultimately resulting in increased protein synthesis. Spatial transcriptomic profiling of Atp7aflx/Y :: Vil1Cre/+ mice identified up-regulated protein synthesis machinery and mTORC1-S6K pathway genes in copper-deficient Purkinje neurons in the cerebellum. Genetic epistasis experiments in Drosophila demonstrated that copper deficiency dendritic phenotypes in class IV neurons are improved or rescued by increased S6k expression or 4E-BP1 (Thor) RNAi, while epidermis phenotypes are exacerbated by Akt, S6k, or raptor RNAi. Overall, we demonstrate that increased mTORC1-S6K pathway activation and protein synthesis is an adaptive mechanism by which neuronal cells respond to copper deficiency.

铜缺乏和儿童神经变性遗传模型中的适应性蛋白合成。
由铜转运体SLC31A1 (CTR1)或ATP7A突变引起的罕见遗传性疾病诱导大脑缺铜,导致婴儿期癫痫发作和神经变性,其机制尚不清楚。在这里,我们使用多个模型系统来表征神经元细胞对铜缺乏反应的分子机制。神经母细胞瘤细胞中CTR1的靶向缺失会产生铜缺乏,从而产生有利于糖酵解而不是氧化磷酸化的代谢转变。CTR1 KO细胞的蛋白质组学和转录组学分析显示mTORC1和S6K信号同时上调,PERK信号减少。基因和蛋白质表达模式以及药物基因组学显示,mTORC1-S6K通路的激活增加是一种促进生存的机制,最终导致蛋白质合成增加。Atp7aflx/Y:: Vil1Cre/+小鼠的空间转录组学分析发现,小脑缺铜浦肯野神经元中蛋白合成机制和mTORC1-S6K通路基因上调。果蝇遗传上位实验表明,增加S6k表达或4E-BP1 (Thor) RNAi可改善或挽救IV类神经元的缺铜树突状表型,而Akt、S6k或raptor RNAi可加重表皮表型。总的来说,我们证明了mTORC1-S6K通路激活和蛋白质合成的增加是神经元细胞对铜缺乏做出反应的一种适应性机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biology of the Cell
Molecular Biology of the Cell 生物-细胞生物学
CiteScore
6.00
自引率
6.10%
发文量
402
审稿时长
2 months
期刊介绍: MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信