Kang Li , Shaojie Yang , Tengfei Wang , Chunjun Zhan , Zhonghu Bai , Yankun Yang
{"title":"Enhanced methanol-xylose co-utilization strategy in Komagataella phaffii","authors":"Kang Li , Shaojie Yang , Tengfei Wang , Chunjun Zhan , Zhonghu Bai , Yankun Yang","doi":"10.1016/j.jbiotec.2025.01.017","DOIUrl":null,"url":null,"abstract":"<div><div>Bio-manufacturing based on non-food carbon sources is conducive to alleviating the global food crisis and greenhouse effect. However, the mechanism of the utilization of methanol and xylose in <em>Komagataella phaffii</em> based on endogenous metabolic pathways has not been fully explored. In this study, transcriptomics revealed a positive correlation between methanol metabolic efficiency and the transcription level of genes related to xylose metabolism and phosphate metabolism. By providing sufficient phosphate to the strain, the methanol utilization rate of the <em>Komagataella phaffii</em> GA01 strain was improved, and the final biomass reached 7.5 g DCW/L. Metabolomics further confirmed that methanol could effectively activate xylose metabolism of the strain, and the consumption rates of methanol and xylose of the <em>Komagataella phaffii</em> GA01 strain could reach 3.87 g/L/d and 1.83 g/L/d, which were 34 % and 357.5 % higher than that of the wild-type strain, respectively. This study further promotes the application of methanol and xylose in microbial fermentation.</div></div>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":"399 ","pages":"Pages 117-126"},"PeriodicalIF":4.1000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168165625000239","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bio-manufacturing based on non-food carbon sources is conducive to alleviating the global food crisis and greenhouse effect. However, the mechanism of the utilization of methanol and xylose in Komagataella phaffii based on endogenous metabolic pathways has not been fully explored. In this study, transcriptomics revealed a positive correlation between methanol metabolic efficiency and the transcription level of genes related to xylose metabolism and phosphate metabolism. By providing sufficient phosphate to the strain, the methanol utilization rate of the Komagataella phaffii GA01 strain was improved, and the final biomass reached 7.5 g DCW/L. Metabolomics further confirmed that methanol could effectively activate xylose metabolism of the strain, and the consumption rates of methanol and xylose of the Komagataella phaffii GA01 strain could reach 3.87 g/L/d and 1.83 g/L/d, which were 34 % and 357.5 % higher than that of the wild-type strain, respectively. This study further promotes the application of methanol and xylose in microbial fermentation.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.