Analysis of TEM micrographs with deep learning reveals APOE genotype-specific associations between HDL particle diameter and Alzheimer's dementia.

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS
Jack Jingyuan Zheng, Brian Vannak Hong, Joanne K Agus, Xinyu Tang, Fei Guo, Carlito B Lebrilla, Izumi Maezawa, Lee-Way Jin, Wyatt N Vreeland, Dean C Ripple, Angela M Zivkovic
{"title":"Analysis of TEM micrographs with deep learning reveals APOE genotype-specific associations between HDL particle diameter and Alzheimer's dementia.","authors":"Jack Jingyuan Zheng, Brian Vannak Hong, Joanne K Agus, Xinyu Tang, Fei Guo, Carlito B Lebrilla, Izumi Maezawa, Lee-Way Jin, Wyatt N Vreeland, Dean C Ripple, Angela M Zivkovic","doi":"10.1016/j.crmeth.2024.100962","DOIUrl":null,"url":null,"abstract":"<p><p>High-density lipoprotein (HDL) particle diameter distribution is informative in the diagnosis of many conditions, including Alzheimer's disease (AD). However, obtaining an accurate HDL size measurement is challenging. We demonstrated the utility of measuring the diameter of more than 1,800,000 HDL particles with the deep learning model YOLOv7 (you only look once) from micrographs of 183 HDL samples, including patients with dementia or normal cognition (controls). This method was shown to be more efficient and accurate than conventional image analysis software. Using this method, we found a higher abundance of small HDLs in participants with dementia compared to controls in patients with the apolipoprotein E (APOE) ε3ε4 genotype, whereas patients with the APOE ε3ε3 genotype had higher variability in the abundance of different HDL subclasses. Our results show an example of accurate individual HDL particle diameter measurement for large-scale clinical samples, which can be expanded to characterize the relationship between disease risk and other nanoparticles in the sub-20-nm diameter size range.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":"5 1","pages":"100962"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11840948/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

High-density lipoprotein (HDL) particle diameter distribution is informative in the diagnosis of many conditions, including Alzheimer's disease (AD). However, obtaining an accurate HDL size measurement is challenging. We demonstrated the utility of measuring the diameter of more than 1,800,000 HDL particles with the deep learning model YOLOv7 (you only look once) from micrographs of 183 HDL samples, including patients with dementia or normal cognition (controls). This method was shown to be more efficient and accurate than conventional image analysis software. Using this method, we found a higher abundance of small HDLs in participants with dementia compared to controls in patients with the apolipoprotein E (APOE) ε3ε4 genotype, whereas patients with the APOE ε3ε3 genotype had higher variability in the abundance of different HDL subclasses. Our results show an example of accurate individual HDL particle diameter measurement for large-scale clinical samples, which can be expanded to characterize the relationship between disease risk and other nanoparticles in the sub-20-nm diameter size range.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信