Georgia E. Kapetaniou, Marius Moisa, Christian C. Ruff, Philippe N. Tobler, Alexander Soutschek
{"title":"Frontopolar Cortex Interacts With Dorsolateral Prefrontal Cortex to Causally Guide Metacognition","authors":"Georgia E. Kapetaniou, Marius Moisa, Christian C. Ruff, Philippe N. Tobler, Alexander Soutschek","doi":"10.1002/hbm.70146","DOIUrl":null,"url":null,"abstract":"<p>Accurate metacognitive judgments about an individual's performance in a mental task require the brain to have access to representations of the quality and difficulty of first-order cognitive processes. However, little is known about how accurate metacognitive judgments are implemented in the brain. Here, we combine brain stimulation with functional neuroimaging to determine the neural and psychological mechanisms underlying the frontopolar cortex's (FPC) role in metacognition. Specifically, we evaluate two-layer neural architectures positing that FPC enables metacognitive judgments by communicating with brain regions encoding first-order decision difficulty. In support of two-layer architectures of metacognition, we found that high-intensity transcranial alternating current stimulation (tACS; 4 mA peak-to-peak) over FPC impaired metacognitive accuracy; at the neural level, this impairment was reflected by reduced coupling between FPC and dorsolateral prefrontal cortex (DLPFC), particularly during difficult metacognitive judgments. We also evaluated conceptual accounts assuming that metacognition relies on self-directed mentalizing. However, we observed no influence of FPC tACS on mentalizing performance and only a weak overlap of the networks underlying metacognition and mentalizing. Together, our findings put the FPC at the center of a two-layer architecture that enables accurate evaluations of cognitive processes, mainly via the FPC's connectivity with regions encoding first-level task difficulty, with little contributions from mentalizing-related processes.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 2","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775761/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70146","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate metacognitive judgments about an individual's performance in a mental task require the brain to have access to representations of the quality and difficulty of first-order cognitive processes. However, little is known about how accurate metacognitive judgments are implemented in the brain. Here, we combine brain stimulation with functional neuroimaging to determine the neural and psychological mechanisms underlying the frontopolar cortex's (FPC) role in metacognition. Specifically, we evaluate two-layer neural architectures positing that FPC enables metacognitive judgments by communicating with brain regions encoding first-order decision difficulty. In support of two-layer architectures of metacognition, we found that high-intensity transcranial alternating current stimulation (tACS; 4 mA peak-to-peak) over FPC impaired metacognitive accuracy; at the neural level, this impairment was reflected by reduced coupling between FPC and dorsolateral prefrontal cortex (DLPFC), particularly during difficult metacognitive judgments. We also evaluated conceptual accounts assuming that metacognition relies on self-directed mentalizing. However, we observed no influence of FPC tACS on mentalizing performance and only a weak overlap of the networks underlying metacognition and mentalizing. Together, our findings put the FPC at the center of a two-layer architecture that enables accurate evaluations of cognitive processes, mainly via the FPC's connectivity with regions encoding first-level task difficulty, with little contributions from mentalizing-related processes.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.