Baoyue Ding, Mingjuan Li, Jie Zhang, Xiaojuan Zhang, Huan Gao, Jianqing Gao, Chunyan Shen, Yan Zhou, Fanzhu Li, Ailin Liu
{"title":"Co-Delivery of Dacarbazine and miRNA 34a Combinations to Synergistically Improve Malignant Melanoma Treatments.","authors":"Baoyue Ding, Mingjuan Li, Jie Zhang, Xiaojuan Zhang, Huan Gao, Jianqing Gao, Chunyan Shen, Yan Zhou, Fanzhu Li, Ailin Liu","doi":"10.2147/DDDT.S497888","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The incidence of malignant melanoma (MM) has risen over the past three decades, and despite advancements in treatment, there is still a need to improve treatment modalities. This study developed a promising strategy for tumor-targeted co-delivery of Dacarbazine (DTIC) and miRNA 34a-loaded PHRD micelles (Co-PHRD) for combination treatment of MM.</p><p><strong>Methods: </strong>To construct the dual drug-loaded delivery system Co-PHRD, poly (L-arginine)-poly (L-histidine)-polylactic acid (PLA) was employed as a building block. In this system, poly (L-arginine) and PLA function as hydrophilic and hydrophobic blocks, respectively, which self-assemble into micelles in aqueous solution. Poly(L-arginine) and poly(L-histidine) are efficiently taken up by cells and perform efficient gene condensation, which facilitate the release of encapsulated miRNA 34a into the cytoplasm. Due to its lipophilic properties, PLA can effectively encapsulate DTIC. The polypeptide aptamer DR5-TAT (D21) was used as a targeting ligand. The properties of Co-PHRD and its in vitro release behaviour were characterized. Additionally, the synergetic effects of DTIC and miRNA 34a in melanoma therapy were investigated in vitro and in vivo.</p><p><strong>Results: </strong>Compared to DTIC treatment alone, Co-PHRD treatment exhibited 1.84-fold greater cytotoxicity in A375 cells, demonstrating that miRNA 34a enhanced the efficacy of DTIC. The particle size of Co-PHRD at an N/P ratio of 10 was 164.1 ± 4.5 nm, and the zeta potential of Co-PHRD was 27.3 ± 1.38 mV. The flow cytometry and CLSM results revealed both DTIC and miRNA 34a were avidly taken up by A375 cells at 1 h and 4 h in PHRD. In addition, in vivo results indicated that Co-PHRD micelles can significantly inhibit tumor growth without causing significant damage to major organs.</p><p><strong>Conclusion: </strong>Co-delivery of DTIC and miRNA 34a via polypeptide micelles showed synergistic effects against MM, offering a new strategy for gene and chemotherapy.</p>","PeriodicalId":11290,"journal":{"name":"Drug Design, Development and Therapy","volume":"19 ","pages":"553-568"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11774112/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Design, Development and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/DDDT.S497888","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The incidence of malignant melanoma (MM) has risen over the past three decades, and despite advancements in treatment, there is still a need to improve treatment modalities. This study developed a promising strategy for tumor-targeted co-delivery of Dacarbazine (DTIC) and miRNA 34a-loaded PHRD micelles (Co-PHRD) for combination treatment of MM.
Methods: To construct the dual drug-loaded delivery system Co-PHRD, poly (L-arginine)-poly (L-histidine)-polylactic acid (PLA) was employed as a building block. In this system, poly (L-arginine) and PLA function as hydrophilic and hydrophobic blocks, respectively, which self-assemble into micelles in aqueous solution. Poly(L-arginine) and poly(L-histidine) are efficiently taken up by cells and perform efficient gene condensation, which facilitate the release of encapsulated miRNA 34a into the cytoplasm. Due to its lipophilic properties, PLA can effectively encapsulate DTIC. The polypeptide aptamer DR5-TAT (D21) was used as a targeting ligand. The properties of Co-PHRD and its in vitro release behaviour were characterized. Additionally, the synergetic effects of DTIC and miRNA 34a in melanoma therapy were investigated in vitro and in vivo.
Results: Compared to DTIC treatment alone, Co-PHRD treatment exhibited 1.84-fold greater cytotoxicity in A375 cells, demonstrating that miRNA 34a enhanced the efficacy of DTIC. The particle size of Co-PHRD at an N/P ratio of 10 was 164.1 ± 4.5 nm, and the zeta potential of Co-PHRD was 27.3 ± 1.38 mV. The flow cytometry and CLSM results revealed both DTIC and miRNA 34a were avidly taken up by A375 cells at 1 h and 4 h in PHRD. In addition, in vivo results indicated that Co-PHRD micelles can significantly inhibit tumor growth without causing significant damage to major organs.
Conclusion: Co-delivery of DTIC and miRNA 34a via polypeptide micelles showed synergistic effects against MM, offering a new strategy for gene and chemotherapy.
期刊介绍:
Drug Design, Development and Therapy is an international, peer-reviewed, open access journal that spans the spectrum of drug design, discovery and development through to clinical applications.
The journal is characterized by the rapid reporting of high-quality original research, reviews, expert opinions, commentary and clinical studies in all therapeutic areas.
Specific topics covered by the journal include:
Drug target identification and validation
Phenotypic screening and target deconvolution
Biochemical analyses of drug targets and their pathways
New methods or relevant applications in molecular/drug design and computer-aided drug discovery*
Design, synthesis, and biological evaluation of novel biologically active compounds (including diagnostics or chemical probes)
Structural or molecular biological studies elucidating molecular recognition processes
Fragment-based drug discovery
Pharmaceutical/red biotechnology
Isolation, structural characterization, (bio)synthesis, bioengineering and pharmacological evaluation of natural products**
Distribution, pharmacokinetics and metabolic transformations of drugs or biologically active compounds in drug development
Drug delivery and formulation (design and characterization of dosage forms, release mechanisms and in vivo testing)
Preclinical development studies
Translational animal models
Mechanisms of action and signalling pathways
Toxicology
Gene therapy, cell therapy and immunotherapy
Personalized medicine and pharmacogenomics
Clinical drug evaluation
Patient safety and sustained use of medicines.