Célia Rabhi, Nicolas Babault, Céline Martin, Bénédicte Desforges, Alexandre Maucuer, Vandana Joshi, Serhii Pankivskyi, Yitian Feng, Guillaume Bollot, Revital Rattenbach, David Pastré, Ahmed Bouhss
{"title":"TDP-43 nuclear retention is antagonized by hypo-phosphorylation of its C-terminus in the cytoplasm.","authors":"Célia Rabhi, Nicolas Babault, Céline Martin, Bénédicte Desforges, Alexandre Maucuer, Vandana Joshi, Serhii Pankivskyi, Yitian Feng, Guillaume Bollot, Revital Rattenbach, David Pastré, Ahmed Bouhss","doi":"10.1038/s42003-025-07456-7","DOIUrl":null,"url":null,"abstract":"<p><p>Protein aggregation is a hallmark of many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), in which TDP-43, a nuclear RNA-binding protein, forms cytoplasmic inclusions. Here, we have developed a robust and automated method to assess protein self-assembly in the cytoplasm using microtubules as nanoplatforms. Importantly, we have analyzed specifically the self-assembly of full-length TDP-43 and its mRNA binding that are regulated by the phosphorylation of its self-adhesive C-terminus, which is the recipient of many pathological mutations. We show that C-terminus phosphorylation prevents the recruitment of TDP-43 in mRNA-rich stress granules only under acute stress conditions because of a low affinity for mRNA but not under mild stress conditions. In addition, the self-assembly of the C-terminus is negatively regulated by phosphorylation in the cytoplasm which in turn promotes TDP-43 nuclear import. We anticipate that reducing TDP-43 C-terminus self-assembly in the cytoplasm may be an interesting strategy to reverse TDP-43 nuclear depletion in neurodegenerative diseases.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"136"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775348/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07456-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Protein aggregation is a hallmark of many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), in which TDP-43, a nuclear RNA-binding protein, forms cytoplasmic inclusions. Here, we have developed a robust and automated method to assess protein self-assembly in the cytoplasm using microtubules as nanoplatforms. Importantly, we have analyzed specifically the self-assembly of full-length TDP-43 and its mRNA binding that are regulated by the phosphorylation of its self-adhesive C-terminus, which is the recipient of many pathological mutations. We show that C-terminus phosphorylation prevents the recruitment of TDP-43 in mRNA-rich stress granules only under acute stress conditions because of a low affinity for mRNA but not under mild stress conditions. In addition, the self-assembly of the C-terminus is negatively regulated by phosphorylation in the cytoplasm which in turn promotes TDP-43 nuclear import. We anticipate that reducing TDP-43 C-terminus self-assembly in the cytoplasm may be an interesting strategy to reverse TDP-43 nuclear depletion in neurodegenerative diseases.
期刊介绍:
Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.