Recurrent neural networks with transient trajectory explain working memory encoding mechanisms.

IF 5.2 1区 生物学 Q1 BIOLOGY
Chenghao Liu, Shuncheng Jia, Hongxing Liu, Xuanle Zhao, Chengyu T Li, Bo Xu, Tielin Zhang
{"title":"Recurrent neural networks with transient trajectory explain working memory encoding mechanisms.","authors":"Chenghao Liu, Shuncheng Jia, Hongxing Liu, Xuanle Zhao, Chengyu T Li, Bo Xu, Tielin Zhang","doi":"10.1038/s42003-024-07282-3","DOIUrl":null,"url":null,"abstract":"<p><p>Whether working memory (WM) is encoded by persistent activity using attractors or by dynamic activity using transient trajectories has been debated for decades in both experimental and modeling studies, and a consensus has not been reached. Even though many recurrent neural networks (RNNs) have been proposed to simulate WM, most networks are designed to match respective experimental observations and show either transient or persistent activities. Those few which consider networks with both activity patterns have not attempted to directly compare their memory capabilities. In this study, we build transient-trajectory-based RNNs (TRNNs) and compare them to vanilla RNNs with more persistent activities. The TRNN incorporates biologically plausible modifications, including self-inhibition, sparse connection and hierarchical topology. Besides activity patterns resembling animal recordings and retained versatility to variable encoding time, TRNNs show better performance in delayed choice and spatial memory reinforcement learning tasks. Therefore, this study provides evidence supporting the transient activity theory to explain the WM mechanism from the model designing point of view.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"137"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775331/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-024-07282-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Whether working memory (WM) is encoded by persistent activity using attractors or by dynamic activity using transient trajectories has been debated for decades in both experimental and modeling studies, and a consensus has not been reached. Even though many recurrent neural networks (RNNs) have been proposed to simulate WM, most networks are designed to match respective experimental observations and show either transient or persistent activities. Those few which consider networks with both activity patterns have not attempted to directly compare their memory capabilities. In this study, we build transient-trajectory-based RNNs (TRNNs) and compare them to vanilla RNNs with more persistent activities. The TRNN incorporates biologically plausible modifications, including self-inhibition, sparse connection and hierarchical topology. Besides activity patterns resembling animal recordings and retained versatility to variable encoding time, TRNNs show better performance in delayed choice and spatial memory reinforcement learning tasks. Therefore, this study provides evidence supporting the transient activity theory to explain the WM mechanism from the model designing point of view.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信