Chromatin environment-dependent effects of DOT1L on gene expression in male germ cells.

IF 5.2 1区 生物学 Q1 BIOLOGY
Manon Coulée, Alberto de la Iglesia, Mélina Blanco, Clara Gobé, Clémentine Lapoujade, Côme Ialy-Radio, Lucia Alvarez-Gonzalez, Guillaume Meurice, Aurora Ruiz-Herrera, Pierre Fouchet, Julie Cocquet, Laïla El Khattabi
{"title":"Chromatin environment-dependent effects of DOT1L on gene expression in male germ cells.","authors":"Manon Coulée, Alberto de la Iglesia, Mélina Blanco, Clara Gobé, Clémentine Lapoujade, Côme Ialy-Radio, Lucia Alvarez-Gonzalez, Guillaume Meurice, Aurora Ruiz-Herrera, Pierre Fouchet, Julie Cocquet, Laïla El Khattabi","doi":"10.1038/s42003-024-07393-x","DOIUrl":null,"url":null,"abstract":"<p><p>The H3K79 methyltransferase DOT1L is essential for multiple aspects of mammalian development where it has been shown to regulate gene expression. Here, by producing and integrating epigenomic and spike-in RNA-seq data, we decipher the molecular role of DOT1L during mouse spermatogenesis and show that it has opposite effects on gene expression depending on chromatin environment. On one hand, DOT1L represses autosomal genes that are devoid of H3K79me2 at their bodies and located in H3K27me3-rich/H3K27ac-poor environments. On the other hand, it activates the expression of genes enriched in H3K79me2 and located in H3K27me3-poor/H3K27ac-rich environments, predominantly X chromosome-linked genes, after meiosis I. This coincides with a significant increase in DOT1L expression at this stage and a genome-wide acquisition of H3K79me2, particularly on the sex chromosomes. Taken together, our results show that H3K79me2 positively correlates with male germ cell genetic program throughout spermatogenesis, with DOT1L predominantly inhibiting rather than activating gene expression. Interestingly, while DOT1L appears to directly regulate the (re)activation of X genes following meiotic sex chromosome inactivation, it also controls the timely expression of (autosomal) differentiation genes during spermatogenesis.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"138"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11775102/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-024-07393-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The H3K79 methyltransferase DOT1L is essential for multiple aspects of mammalian development where it has been shown to regulate gene expression. Here, by producing and integrating epigenomic and spike-in RNA-seq data, we decipher the molecular role of DOT1L during mouse spermatogenesis and show that it has opposite effects on gene expression depending on chromatin environment. On one hand, DOT1L represses autosomal genes that are devoid of H3K79me2 at their bodies and located in H3K27me3-rich/H3K27ac-poor environments. On the other hand, it activates the expression of genes enriched in H3K79me2 and located in H3K27me3-poor/H3K27ac-rich environments, predominantly X chromosome-linked genes, after meiosis I. This coincides with a significant increase in DOT1L expression at this stage and a genome-wide acquisition of H3K79me2, particularly on the sex chromosomes. Taken together, our results show that H3K79me2 positively correlates with male germ cell genetic program throughout spermatogenesis, with DOT1L predominantly inhibiting rather than activating gene expression. Interestingly, while DOT1L appears to directly regulate the (re)activation of X genes following meiotic sex chromosome inactivation, it also controls the timely expression of (autosomal) differentiation genes during spermatogenesis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信