{"title":"miR-301a-mediated crosstalk between the Hedgehog and HIPPO/YAP signaling pathways promotes pancreatic cancer.","authors":"Bing Qi, Yuqiong Wang, Xian Zhu, Yanfang Gong, Jing Jin, Hongyu Wu, Xiaohua Man, Feng Liu, Wenzhu Yao, Jun Gao","doi":"10.1080/15384047.2025.2457761","DOIUrl":null,"url":null,"abstract":"<p><p>Pancreatic ductal adenocarcinoma (PDAC) poses a significant challenge in oncology due to its dismal prognosis and limited therapeutic options. In this study, we investigated the role of miR-301a in facilitating crosstalk between the Hedgehog (Hh) and HIPPO/YAP signaling pathways during the progression of PDAC. Our findings revealed that miR-301a served as a central regulatory node, targeting Gli1 within the Hh pathway and STK4 within the HIPPO/YAP pathway. Immunohistochemical and molecular analyses confirmed dysregulation of pathway components in pancreatic cancer, underscoring the pivotal role of miR-301a. Functional assays demonstrated the impact of miR-301a on cell proliferation and apoptosis, particularly in synergy with TNF-α. Overall, our study elucidated the intricate interplay between the Hh and HIPPO/YAP pathways mediated by miR-301a, providing valuable insights into potential therapeutic strategies for intervening in PDAC.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2457761"},"PeriodicalIF":4.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760222/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2025.2457761","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pancreatic ductal adenocarcinoma (PDAC) poses a significant challenge in oncology due to its dismal prognosis and limited therapeutic options. In this study, we investigated the role of miR-301a in facilitating crosstalk between the Hedgehog (Hh) and HIPPO/YAP signaling pathways during the progression of PDAC. Our findings revealed that miR-301a served as a central regulatory node, targeting Gli1 within the Hh pathway and STK4 within the HIPPO/YAP pathway. Immunohistochemical and molecular analyses confirmed dysregulation of pathway components in pancreatic cancer, underscoring the pivotal role of miR-301a. Functional assays demonstrated the impact of miR-301a on cell proliferation and apoptosis, particularly in synergy with TNF-α. Overall, our study elucidated the intricate interplay between the Hh and HIPPO/YAP pathways mediated by miR-301a, providing valuable insights into potential therapeutic strategies for intervening in PDAC.
期刊介绍:
Cancer, the second leading cause of death, is a heterogenous group of over 100 diseases. Cancer is characterized by disordered and deregulated cellular and stromal proliferation accompanied by reduced cell death with the ability to survive under stresses of nutrient and growth factor deprivation, hypoxia, and loss of cell-to-cell contacts. At the molecular level, cancer is a genetic disease that develops due to the accumulation of mutations over time in somatic cells. The phenotype includes genomic instability and chromosomal aneuploidy that allows for acceleration of genetic change. Malignant transformation and tumor progression of any cell requires immortalization, loss of checkpoint control, deregulation of growth, and survival. A tremendous amount has been learned about the numerous cellular and molecular genetic changes and the host-tumor interactions that accompany tumor development and progression. It is the goal of the field of Molecular Oncology to use this knowledge to understand cancer pathogenesis and drug action, as well as to develop more effective diagnostic and therapeutic strategies for cancer. This includes preventative strategies as well as approaches to treat metastases. With the availability of the human genome sequence and genomic and proteomic approaches, a wealth of tools and resources are generating even more information. The challenge will be to make biological sense out of the information, to develop appropriate models and hypotheses and to translate information for the clinicians and the benefit of their patients. Cancer Biology & Therapy aims to publish original research on the molecular basis of cancer, including articles with translational relevance to diagnosis or therapy. We will include timely reviews covering the broad scope of the journal. The journal will also publish op-ed pieces and meeting reports of interest. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The journal and the outstanding Editorial Board will strive to maintain the highest standards for excellence in all activities to generate a valuable resource.