Zhanglin Zhang, Xiang Lin, Yaling Yang, Xuemei Wang, Yi Wang, Xianbao Huang, Miao Hong, Wei Gao, Hua He, M James You, Yi Yang, Guangyao Kong
{"title":"Caspase 3-specific cleavage of ubiquitin-specific peptidase 48 enhances drug-induced apoptosis in AML.","authors":"Zhanglin Zhang, Xiang Lin, Yaling Yang, Xuemei Wang, Yi Wang, Xianbao Huang, Miao Hong, Wei Gao, Hua He, M James You, Yi Yang, Guangyao Kong","doi":"10.1080/15384047.2025.2459426","DOIUrl":null,"url":null,"abstract":"<p><p>Dysfunction or dysregulation of deubiquitination is closely related to the initiation and development of multiple cancers. Targeted regulation of deubiquitination has been recognized as an important strategy in tumor therapy. However, the mechanism by which drugs regulate deubiquitinase is not clear. Here, we identified ubiquitin-specific peptidase 48 (USP48), a member of the ubiquitin-specific protease family highly expressed in various tumors, as a specific substrate for the activated caspase-3. During drug induced apoptosis of AML cells, activated caspase-3 cleaves USP48 through recognizing the conservative motif DEQD located at 611-614 sites of human USP48. Subsequent analysis showed that the cleavage USP48 N-terminal fragment which contains catalytic active domain is easily degraded by ubiquitination. Meanwhile knockdown experiment showed that inhibiting the expression of USP48 could also promotes apoptosis and enhance the efficacy of chemotherapy drugs. Altogether, these results suggest that targeting USP48 may represent a novel therapeutic strategy in AML.</p>","PeriodicalId":9536,"journal":{"name":"Cancer Biology & Therapy","volume":"26 1","pages":"2459426"},"PeriodicalIF":4.4000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11781246/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/15384047.2025.2459426","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dysfunction or dysregulation of deubiquitination is closely related to the initiation and development of multiple cancers. Targeted regulation of deubiquitination has been recognized as an important strategy in tumor therapy. However, the mechanism by which drugs regulate deubiquitinase is not clear. Here, we identified ubiquitin-specific peptidase 48 (USP48), a member of the ubiquitin-specific protease family highly expressed in various tumors, as a specific substrate for the activated caspase-3. During drug induced apoptosis of AML cells, activated caspase-3 cleaves USP48 through recognizing the conservative motif DEQD located at 611-614 sites of human USP48. Subsequent analysis showed that the cleavage USP48 N-terminal fragment which contains catalytic active domain is easily degraded by ubiquitination. Meanwhile knockdown experiment showed that inhibiting the expression of USP48 could also promotes apoptosis and enhance the efficacy of chemotherapy drugs. Altogether, these results suggest that targeting USP48 may represent a novel therapeutic strategy in AML.
期刊介绍:
Cancer, the second leading cause of death, is a heterogenous group of over 100 diseases. Cancer is characterized by disordered and deregulated cellular and stromal proliferation accompanied by reduced cell death with the ability to survive under stresses of nutrient and growth factor deprivation, hypoxia, and loss of cell-to-cell contacts. At the molecular level, cancer is a genetic disease that develops due to the accumulation of mutations over time in somatic cells. The phenotype includes genomic instability and chromosomal aneuploidy that allows for acceleration of genetic change. Malignant transformation and tumor progression of any cell requires immortalization, loss of checkpoint control, deregulation of growth, and survival. A tremendous amount has been learned about the numerous cellular and molecular genetic changes and the host-tumor interactions that accompany tumor development and progression. It is the goal of the field of Molecular Oncology to use this knowledge to understand cancer pathogenesis and drug action, as well as to develop more effective diagnostic and therapeutic strategies for cancer. This includes preventative strategies as well as approaches to treat metastases. With the availability of the human genome sequence and genomic and proteomic approaches, a wealth of tools and resources are generating even more information. The challenge will be to make biological sense out of the information, to develop appropriate models and hypotheses and to translate information for the clinicians and the benefit of their patients. Cancer Biology & Therapy aims to publish original research on the molecular basis of cancer, including articles with translational relevance to diagnosis or therapy. We will include timely reviews covering the broad scope of the journal. The journal will also publish op-ed pieces and meeting reports of interest. The goal is to foster communication and rapid exchange of information through timely publication of important results using traditional as well as electronic formats. The journal and the outstanding Editorial Board will strive to maintain the highest standards for excellence in all activities to generate a valuable resource.