The common chemical logic of 'bridged' peroxo species in mononuclear non-heme iron systems.

IF 6.2 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kirklin L McWhorter, Vatsal Purohit, Joseph A Ambarian, Riddhi Jhunjhunwala, Katherine M Davis
{"title":"The common chemical logic of 'bridged' peroxo species in mononuclear non-heme iron systems.","authors":"Kirklin L McWhorter, Vatsal Purohit, Joseph A Ambarian, Riddhi Jhunjhunwala, Katherine M Davis","doi":"10.1080/10409238.2025.2455084","DOIUrl":null,"url":null,"abstract":"<p><p>Mononuclear non-heme iron enzymes catalyze a wide array of important oxidative transformations. They are correspondingly diverse in both structure and mechanism. Despite significant evolutionary distance, it is becoming increasingly apparent that these enzymes nonetheless illustrate a compelling case of mechanistic convergence <i>via</i> the formation of peroxo species bridging metal and substrate. Aromatic amino acid hydroxylases and 2-oxoglutarate (2OG)-dependent enzymes, for example, form bridged acyl- or alkylperoxo intermediates en route to highly oxidizing ferryl species, while catechol dioxygenases utilize such 'bridged' peroxos directly. Analogous acylperoxoiron intermediates have also been demonstrated to precede a perferryl oxidant in biomimetic systems. Herein, we synthesize the results of structural, spectroscopic and computational studies on these systems to gain insight into the shared chemical logic that drives iron-peracid formation and reactivity. In all cases, reactions are tuned <i>via</i> the electron-donating properties of coordinating ligands. Second-sphere residues have also been demonstrated to modulate the orientation of the bridge, thereby influencing reaction outcomes. The effect of carboxylic acid addition to relevant biomimetic catalyst reactions further underscores these fundamental chemical principles. Altogether, we provide a comprehensive analysis of the cross-cutting mechanisms that guide peroxo formation and subsequent oxidative chemistry performed by non-heme mononuclear iron catalysts.</p>","PeriodicalId":10794,"journal":{"name":"Critical Reviews in Biochemistry and Molecular Biology","volume":" ","pages":"418-433"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biochemistry and Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10409238.2025.2455084","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/29 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Mononuclear non-heme iron enzymes catalyze a wide array of important oxidative transformations. They are correspondingly diverse in both structure and mechanism. Despite significant evolutionary distance, it is becoming increasingly apparent that these enzymes nonetheless illustrate a compelling case of mechanistic convergence via the formation of peroxo species bridging metal and substrate. Aromatic amino acid hydroxylases and 2-oxoglutarate (2OG)-dependent enzymes, for example, form bridged acyl- or alkylperoxo intermediates en route to highly oxidizing ferryl species, while catechol dioxygenases utilize such 'bridged' peroxos directly. Analogous acylperoxoiron intermediates have also been demonstrated to precede a perferryl oxidant in biomimetic systems. Herein, we synthesize the results of structural, spectroscopic and computational studies on these systems to gain insight into the shared chemical logic that drives iron-peracid formation and reactivity. In all cases, reactions are tuned via the electron-donating properties of coordinating ligands. Second-sphere residues have also been demonstrated to modulate the orientation of the bridge, thereby influencing reaction outcomes. The effect of carboxylic acid addition to relevant biomimetic catalyst reactions further underscores these fundamental chemical principles. Altogether, we provide a comprehensive analysis of the cross-cutting mechanisms that guide peroxo formation and subsequent oxidative chemistry performed by non-heme mononuclear iron catalysts.

单核非血红素铁系统中“桥接”过氧化物的共同化学逻辑。
单核非血红素铁酶催化一系列重要的氧化转化。它们在结构和机制上也相应地多样化。尽管有显著的进化距离,但越来越明显的是,这些酶仍然通过形成过氧化物来连接金属和底物,从而说明了一个令人信服的机械趋同的案例。例如,芳香氨基酸羟化酶和2-氧戊二酸(2OG)依赖性酶在通往高氧化性铁基的途中形成桥接的酰基或烷基过氧化物中间体,而儿茶酚双加氧酶直接利用这种“桥接”过氧化物。类似的酰基过氧铁中间体也被证明在仿生系统中先于过铁基氧化剂。在此,我们综合了这些系统的结构、光谱和计算研究结果,以深入了解驱动过酸铁形成和反应性的共同化学逻辑。在所有情况下,反应都是通过配位配体的给电子性质来调节的。第二球残基也被证明可以调节桥的取向,从而影响反应结果。羧酸对相关仿生催化剂反应的影响进一步强调了这些基本的化学原理。总之,我们提供了一个全面的跨切机制的分析,指导过氧化物的形成和随后的氧化化学由非血红素单核铁催化剂执行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.90
自引率
0.00%
发文量
6
期刊介绍: As the discipline of biochemistry and molecular biology have greatly advanced in the last quarter century, significant contributions have been made towards the advancement of general medicine, genetics, immunology, developmental biology, and biophysics. Investigators in a wide range of disciplines increasingly require an appreciation of the significance of current biochemical and molecular biology advances while, members of the biochemical and molecular biology community itself seek concise information on advances in areas remote from their own specialties. Critical Reviews in Biochemistry and Molecular Biology believes that well-written review articles prove an effective device for the integration and meaningful comprehension of vast, often contradictory, literature. Review articles also provide an opportunity for creative scholarship by synthesizing known facts, fruitful hypotheses, and new concepts. Accordingly, Critical Reviews in Biochemistry and Molecular Biology publishes high-quality reviews that organize, evaluate, and present the current status of high-impact, current issues in the area of biochemistry and molecular biology. Topics are selected on the advice of an advisory board of outstanding scientists, who also suggest authors of special competence. The topics chosen are sufficiently broad to interest a wide audience of readers, yet focused enough to be within the competence of a single author. Authors are chosen based on their activity in the field and their proven ability to produce a well-written publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信