Effect of Manipulation Methods and Storage Environments on the Microstructural, Chemical, and Mechanical Properties of Calcium-Enriched Mixture Cement.

IF 3 Q3 MATERIALS SCIENCE, BIOMATERIALS
International Journal of Biomaterials Pub Date : 2025-01-20 eCollection Date: 2025-01-01 DOI:10.1155/ijbm/5560351
Leyla Roghanizadeh, Hassan Torabzadeh, Ardavan Parhizkar, Alireza Akbarzadeh Baghban, Saeed Asgary
{"title":"Effect of Manipulation Methods and Storage Environments on the Microstructural, Chemical, and Mechanical Properties of Calcium-Enriched Mixture Cement.","authors":"Leyla Roghanizadeh, Hassan Torabzadeh, Ardavan Parhizkar, Alireza Akbarzadeh Baghban, Saeed Asgary","doi":"10.1155/ijbm/5560351","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to evaluate the impact of different manipulation methods and storage environments on the microstructural, chemical, and mechanical properties of calcium-enriched mixture (CEM) cement. Four sample groups were examined, including nondried (ND-I) and dried (D-I) groups placed directly in an incubator, dried samples stored in phosphate-buffered saline (PBS) (D-P), and dried samples stored in distilled water (D-W). Various analyses, including Vickers microhardness, compressive strength, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) were conducted after incubating the samples for 7 days. The data were analyzed by Shapiro-Wilk, Levene, independent <i>t</i>, one-way ANOVA, and Tukey HSD tests. Key findings include the ND-I group exhibited a significantly longer setting time but the lowest microhardness and compressive strength. D-P showed the highest microhardness, while D-W displayed the highest compressive strength. FTIR analysis revealed vibration modes related to (PO4)<sup>3-</sup> ions and Si compounds in all groups, with dried groups showing more vibrations of (PO4)<sup>3-</sup> ions and OH groups, and D-P and D-W groups displayed vibration modes of (CO3)<sup>2-</sup> ions. XRD analysis indicated increased tri/dicalcium silicate reflections in CEM groups exposed to PBS or distilled water. D-I and D-W groups presented hexagonal or rectangular cubic and needle-like crystals, while D-P showed a homogeneous globular structure covered with fine crystals. The order of the weight percentage of major elemental constituents of D-P group was oxygen, calcium, phosphorus, zirconium, barium, carbon, silicon, and sulfur. Incremental placement, drying each increment, and exposing CEM to PBS/tissue fluids result in a faster set and more tolerant cement with a more uniform microstructure. The formation of hydroxyapatite can occur on the surface of the set cement.</p>","PeriodicalId":13704,"journal":{"name":"International Journal of Biomaterials","volume":"2025 ","pages":"5560351"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11772065/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/ijbm/5560351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

This study aimed to evaluate the impact of different manipulation methods and storage environments on the microstructural, chemical, and mechanical properties of calcium-enriched mixture (CEM) cement. Four sample groups were examined, including nondried (ND-I) and dried (D-I) groups placed directly in an incubator, dried samples stored in phosphate-buffered saline (PBS) (D-P), and dried samples stored in distilled water (D-W). Various analyses, including Vickers microhardness, compressive strength, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) were conducted after incubating the samples for 7 days. The data were analyzed by Shapiro-Wilk, Levene, independent t, one-way ANOVA, and Tukey HSD tests. Key findings include the ND-I group exhibited a significantly longer setting time but the lowest microhardness and compressive strength. D-P showed the highest microhardness, while D-W displayed the highest compressive strength. FTIR analysis revealed vibration modes related to (PO4)3- ions and Si compounds in all groups, with dried groups showing more vibrations of (PO4)3- ions and OH groups, and D-P and D-W groups displayed vibration modes of (CO3)2- ions. XRD analysis indicated increased tri/dicalcium silicate reflections in CEM groups exposed to PBS or distilled water. D-I and D-W groups presented hexagonal or rectangular cubic and needle-like crystals, while D-P showed a homogeneous globular structure covered with fine crystals. The order of the weight percentage of major elemental constituents of D-P group was oxygen, calcium, phosphorus, zirconium, barium, carbon, silicon, and sulfur. Incremental placement, drying each increment, and exposing CEM to PBS/tissue fluids result in a faster set and more tolerant cement with a more uniform microstructure. The formation of hydroxyapatite can occur on the surface of the set cement.

操作方法和储存环境对富钙水泥混合料微观结构、化学和力学性能的影响。
本研究旨在评估不同操作方法和储存环境对富钙水泥(CEM)微观结构、化学和力学性能的影响。研究了四组样品,包括直接放置在培养箱中的非干燥(ND-I)和干燥(D-I)组,储存在磷酸盐缓冲盐水(PBS) (D-P)中的干燥样品,以及储存在蒸馏水(D-W)中的干燥样品。培养7天后,对样品进行维氏显微硬度、抗压强度、傅里叶变换红外光谱(FTIR)、x射线衍射(XRD)、扫描电镜(SEM)和能量色散x射线能谱(EDS)分析。采用Shapiro-Wilk、Levene、独立检验、单因素方差分析和Tukey HSD检验对数据进行分析。主要发现包括ND-I组的凝固时间明显更长,但显微硬度和抗压强度最低。D-P的显微硬度最高,D-W的抗压强度最高。FTIR分析显示,在所有基团中(PO4)3-离子和Si化合物的振动模式都与(PO4)3-离子和OH基团的振动模式有关,干燥基团中(PO4)3-离子和OH基团的振动较多,D-P和D-W基团中(CO3)2-离子的振动模式较多。XRD分析表明,暴露于PBS或蒸馏水中的CEM组的三/硅酸二钙反射增加。D-I和D-W基团呈六角形或矩形立方状和针状晶体,而D-P为均匀的球状结构,覆盖有细晶。D-P族主要元素组分的质量百分比依次为氧、钙、磷、锆、钡、碳、硅、硫。增量放置,每次增量干燥,并将CEM暴露于PBS/组织液中,可以使水泥凝固速度更快,耐受性更强,微观结构更均匀。羟基磷灰石的形成可发生在固化水泥的表面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biomaterials
International Journal of Biomaterials MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
4.30
自引率
3.20%
发文量
50
审稿时长
21 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信