Comparison of biomechanical characteristics of the Schneiderian membrane with different transcrestal sinus floor elevation techniques using three-dimensional finite element analysis.

IF 2.6 2区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Xi Lin, Siqi Xu, Lijuan Chen, Guoying Que
{"title":"Comparison of biomechanical characteristics of the Schneiderian membrane with different transcrestal sinus floor elevation techniques using three-dimensional finite element analysis.","authors":"Xi Lin, Siqi Xu, Lijuan Chen, Guoying Que","doi":"10.1186/s12903-025-05499-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of this study was to establish a three-dimensional finite element (FE) hydraulic pressure technique model and compare the biomechanical characteristics of the osteotome technique and the hydraulic pressure technique using three-dimensional finite element analysis (FEA).</p><p><strong>Methods: </strong>Three FE models were created: the hydraulic pressure technique (M1), the osteotome technique with a Ø 1.6-mm osteotome (M2), and the osteotome technique with a Ø 3.0-mm osteotome (M3) models. Three models were simulated via computer-aided design software, with the sinus membrane elevated to 1, 3 and 5 mm, after which the required loading force was recorded. Stress distribution, including the equivalent von Mises stress, tensile stress, compressive stress, shear stress, as well as strain (i.e., sinus membrane displacement in horizontal dimensions) of the three models were subsequently examined and statistically compared.</p><p><strong>Results: </strong>Overall, the required loading force, stress and strain increased as the elevation height increased. The loading force required to elevate the sinus membrane to 1,3 and 5 mm in M1 was 24.9 kPa, 77.1 kPa and 130 kPa, comparing 32.5 kPa, 112. 9 kPa and 200.8 kPa in M2 as well as 54.5 kPa, 160.6 kPa and 273.2 kPa in M3. Under the same elevation height, M1 exhibited the least von Mises stress (P<0.001), as well as the largest horizontal sinus membrane displacement (P<0.001).</p><p><strong>Conclusions: </strong>It can be seen from the FEA results that the hydraulic pressure technique enables a greater portion of the sinus membrane to detach from the sinus floor while exerting less stress on the mucosa when the sinus membrane is elevated up to 5 mm. Based on this study, the hydraulic pressure technique was found to be safer and more effective than the osteotome technique under the same elevation height.</p>","PeriodicalId":9072,"journal":{"name":"BMC Oral Health","volume":"25 1","pages":"146"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Oral Health","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12903-025-05499-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The aim of this study was to establish a three-dimensional finite element (FE) hydraulic pressure technique model and compare the biomechanical characteristics of the osteotome technique and the hydraulic pressure technique using three-dimensional finite element analysis (FEA).

Methods: Three FE models were created: the hydraulic pressure technique (M1), the osteotome technique with a Ø 1.6-mm osteotome (M2), and the osteotome technique with a Ø 3.0-mm osteotome (M3) models. Three models were simulated via computer-aided design software, with the sinus membrane elevated to 1, 3 and 5 mm, after which the required loading force was recorded. Stress distribution, including the equivalent von Mises stress, tensile stress, compressive stress, shear stress, as well as strain (i.e., sinus membrane displacement in horizontal dimensions) of the three models were subsequently examined and statistically compared.

Results: Overall, the required loading force, stress and strain increased as the elevation height increased. The loading force required to elevate the sinus membrane to 1,3 and 5 mm in M1 was 24.9 kPa, 77.1 kPa and 130 kPa, comparing 32.5 kPa, 112. 9 kPa and 200.8 kPa in M2 as well as 54.5 kPa, 160.6 kPa and 273.2 kPa in M3. Under the same elevation height, M1 exhibited the least von Mises stress (P<0.001), as well as the largest horizontal sinus membrane displacement (P<0.001).

Conclusions: It can be seen from the FEA results that the hydraulic pressure technique enables a greater portion of the sinus membrane to detach from the sinus floor while exerting less stress on the mucosa when the sinus membrane is elevated up to 5 mm. Based on this study, the hydraulic pressure technique was found to be safer and more effective than the osteotome technique under the same elevation height.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Oral Health
BMC Oral Health DENTISTRY, ORAL SURGERY & MEDICINE-
CiteScore
3.90
自引率
6.90%
发文量
481
审稿时长
6-12 weeks
期刊介绍: BMC Oral Health is an open access, peer-reviewed journal that considers articles on all aspects of the prevention, diagnosis and management of disorders of the mouth, teeth and gums, as well as related molecular genetics, pathophysiology, and epidemiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信