A Cell-Based Evaluation of the Tyrosinase-Mediated Metabolic Activation of Leukoderma-Inducing Phenols, II: The Depletion of Nrf2 Augments the Cytotoxic Effect Evoked by Tyrosinase in Melanogenic Cells.

IF 4.8 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biomolecules Pub Date : 2025-01-13 DOI:10.3390/biom15010114
Tomoko Nishimaki-Mogami, Shosuke Ito, Kazumasa Wakamatsu, Takumi Akiyama, Norimasa Tamehiro, Norihito Shibata
{"title":"A Cell-Based Evaluation of the Tyrosinase-Mediated Metabolic Activation of Leukoderma-Inducing Phenols, II: The Depletion of <i>Nrf2</i> Augments the Cytotoxic Effect Evoked by Tyrosinase in Melanogenic Cells.","authors":"Tomoko Nishimaki-Mogami, Shosuke Ito, Kazumasa Wakamatsu, Takumi Akiyama, Norimasa Tamehiro, Norihito Shibata","doi":"10.3390/biom15010114","DOIUrl":null,"url":null,"abstract":"<p><p>Chemical leukoderma is a disorder induced by chemicals such as rhododendrol and monobenzone. These compounds possess a <i>p</i>-substituted phenol moiety and undergo oxidation into highly reactive and toxic <i>o</i>-quinone metabolites by tyrosinase. This metabolic activation plays a critical role in the development of leukoderma through the production of damage to melanocytes and immunological responses. This study aimed to develop a simple method for assessing the metabolic activation of leukoderma-inducing phenols without analyzing the metabolite. Although B16BL6 melanoma cells showed insufficient sensitivity to the cytotoxicity assay, the siRNA-mediated knockdown of the transcription factor NRF2 (NFE2L2) repressed the expression of cytoprotective factors, thereby augmenting the cytotoxicity of all six leukoderma-inducing phenols tested in a tyrosinase-dependent manner, indicating enhanced sensitivity to <i>o</i>-quinone metabolites. Additionally, the knockdown of the NRF2-target <i>Slc7a11</i> elevated the cytotoxicity of three out of the six compounds, indicating the involvement of cystine transport in cellular protection. In contrast, the knockdown or inhibition of the NRF2-target <i>Nqo1</i> had minimal effects. The same response was induced upon <i>Nrf2</i> and <i>Slc7a11</i> knockdown in B16-4A5 cells, albeit with low sensitivity owing to low tyrosinase expression. We conclude that the analysis of tyrosinase-dependent cytotoxicity in <i>Nrf2</i>-depleted B16BL6 cells may serve as a useful strategy for evaluating the metabolic activation of chemicals.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11764042/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15010114","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chemical leukoderma is a disorder induced by chemicals such as rhododendrol and monobenzone. These compounds possess a p-substituted phenol moiety and undergo oxidation into highly reactive and toxic o-quinone metabolites by tyrosinase. This metabolic activation plays a critical role in the development of leukoderma through the production of damage to melanocytes and immunological responses. This study aimed to develop a simple method for assessing the metabolic activation of leukoderma-inducing phenols without analyzing the metabolite. Although B16BL6 melanoma cells showed insufficient sensitivity to the cytotoxicity assay, the siRNA-mediated knockdown of the transcription factor NRF2 (NFE2L2) repressed the expression of cytoprotective factors, thereby augmenting the cytotoxicity of all six leukoderma-inducing phenols tested in a tyrosinase-dependent manner, indicating enhanced sensitivity to o-quinone metabolites. Additionally, the knockdown of the NRF2-target Slc7a11 elevated the cytotoxicity of three out of the six compounds, indicating the involvement of cystine transport in cellular protection. In contrast, the knockdown or inhibition of the NRF2-target Nqo1 had minimal effects. The same response was induced upon Nrf2 and Slc7a11 knockdown in B16-4A5 cells, albeit with low sensitivity owing to low tyrosinase expression. We conclude that the analysis of tyrosinase-dependent cytotoxicity in Nrf2-depleted B16BL6 cells may serve as a useful strategy for evaluating the metabolic activation of chemicals.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomolecules
Biomolecules Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍: Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications.  Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信