NPT100-18A rescues mitochondrial oxidative stress and neuronal degeneration in human iPSC-based Parkinson's model.

IF 2.4 4区 医学 Q3 NEUROSCIENCES
Julian E Alecu, Veronika Sigutova, Razvan-Marius Brazdis, Sandra Lörentz, Marios Evangelos Bogiongko, Anara Nursaitova, Martin Regensburger, Laurent Roybon, Kerstin M Galler, Wolfgang Wrasidlo, Beate Winner, Iryna Prots
{"title":"NPT100-18A rescues mitochondrial oxidative stress and neuronal degeneration in human iPSC-based Parkinson's model.","authors":"Julian E Alecu, Veronika Sigutova, Razvan-Marius Brazdis, Sandra Lörentz, Marios Evangelos Bogiongko, Anara Nursaitova, Martin Regensburger, Laurent Roybon, Kerstin M Galler, Wolfgang Wrasidlo, Beate Winner, Iryna Prots","doi":"10.1186/s12868-025-00926-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Parkinson's disease (PD) is a neurodegenerative disorder characterized by protein aggregates mostly consisting of misfolded alpha-synuclein (αSyn). Progressive degeneration of midbrain dopaminergic neurons (mDANs) and nigrostriatal projections results in severe motor symptoms. While the preferential loss of mDANs has not been fully understood yet, the cell type-specific vulnerability has been linked to a unique intracellular milieu, influenced by dopamine metabolism, high demand for mitochondrial activity, and increased level of oxidative stress (OS). These factors have been shown to adversely impact αSyn aggregation. Reciprocally, αSyn aggregates, in particular oligomers, can impair mitochondrial functions and exacerbate OS. Recent drug-discovery studies have identified a series of small molecules, including NPT100-18A, which reduce αSyn oligomerization by preventing misfolding and dimerization. NPT100-18A and structurally similar compounds (such as NPT200-11/UCB0599, currently being assessed in clinical studies) point towards a promising new approach for disease-modification.</p><p><strong>Methods: </strong>Induced pluripotent stem cell (iPSC)-derived mDANs from PD patients with a monoallelic SNCA locus duplication and unaffected controls were treated with NPT100-18A. αSyn aggregation was evaluated biochemically and reactive oxygen species (ROS) levels were assessed in living mDANs using fluorescent dyes. Adenosine triphosphate (ATP) levels were measured using a luminescence-based assay, and neuronal cell death was evaluated by immunocytochemistry.</p><p><strong>Results: </strong>Compared to controls, patient-derived mDANs exhibited higher cytoplasmic and mitochondrial ROS probe levels, reduced ATP-related signals, and increased activation of caspase-3, reflecting early neuronal cell death. NPT100-18A-treatment rescued cleaved caspase-3 levels to control levels and, importantly, attenuated mitochondrial oxidative stress probe levels in a compartment-specific manner and, at higher concentrations, increased ATP signals.</p><p><strong>Conclusions: </strong>Our findings demonstrate that NPT100-18A limits neuronal degeneration in a human in vitro model of PD. In addition, we provide first mechanistic insights into how a compartment-specific antioxidant effect in mitochondria might contribute to the neuroprotective effects of NPT100-18A.</p>","PeriodicalId":9031,"journal":{"name":"BMC Neuroscience","volume":"26 1","pages":"8"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773751/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12868-025-00926-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Parkinson's disease (PD) is a neurodegenerative disorder characterized by protein aggregates mostly consisting of misfolded alpha-synuclein (αSyn). Progressive degeneration of midbrain dopaminergic neurons (mDANs) and nigrostriatal projections results in severe motor symptoms. While the preferential loss of mDANs has not been fully understood yet, the cell type-specific vulnerability has been linked to a unique intracellular milieu, influenced by dopamine metabolism, high demand for mitochondrial activity, and increased level of oxidative stress (OS). These factors have been shown to adversely impact αSyn aggregation. Reciprocally, αSyn aggregates, in particular oligomers, can impair mitochondrial functions and exacerbate OS. Recent drug-discovery studies have identified a series of small molecules, including NPT100-18A, which reduce αSyn oligomerization by preventing misfolding and dimerization. NPT100-18A and structurally similar compounds (such as NPT200-11/UCB0599, currently being assessed in clinical studies) point towards a promising new approach for disease-modification.

Methods: Induced pluripotent stem cell (iPSC)-derived mDANs from PD patients with a monoallelic SNCA locus duplication and unaffected controls were treated with NPT100-18A. αSyn aggregation was evaluated biochemically and reactive oxygen species (ROS) levels were assessed in living mDANs using fluorescent dyes. Adenosine triphosphate (ATP) levels were measured using a luminescence-based assay, and neuronal cell death was evaluated by immunocytochemistry.

Results: Compared to controls, patient-derived mDANs exhibited higher cytoplasmic and mitochondrial ROS probe levels, reduced ATP-related signals, and increased activation of caspase-3, reflecting early neuronal cell death. NPT100-18A-treatment rescued cleaved caspase-3 levels to control levels and, importantly, attenuated mitochondrial oxidative stress probe levels in a compartment-specific manner and, at higher concentrations, increased ATP signals.

Conclusions: Our findings demonstrate that NPT100-18A limits neuronal degeneration in a human in vitro model of PD. In addition, we provide first mechanistic insights into how a compartment-specific antioxidant effect in mitochondria might contribute to the neuroprotective effects of NPT100-18A.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Neuroscience
BMC Neuroscience 医学-神经科学
CiteScore
3.90
自引率
0.00%
发文量
64
审稿时长
16 months
期刊介绍: BMC Neuroscience is an open access, peer-reviewed journal that considers articles on all aspects of neuroscience, welcoming studies that provide insight into the molecular, cellular, developmental, genetic and genomic, systems, network, cognitive and behavioral aspects of nervous system function in both health and disease. Both experimental and theoretical studies are within scope, as are studies that describe methodological approaches to monitoring or manipulating nervous system function.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信