Exploration of endophytic and rhizospheric bacteria of invasive plant Xanthium strumarium L. reveals their potential in plant growth promotion and bacterial wilt suppression.

IF 2.1 4区 生物学 Q3 MICROBIOLOGY
Priyanka Das, Sampurna Kashyap, Indrani Sharma, Suvendra Kumar Ray, Niraj Agarwala
{"title":"Exploration of endophytic and rhizospheric bacteria of invasive plant Xanthium strumarium L. reveals their potential in plant growth promotion and bacterial wilt suppression.","authors":"Priyanka Das, Sampurna Kashyap, Indrani Sharma, Suvendra Kumar Ray, Niraj Agarwala","doi":"10.1007/s42770-024-01599-1","DOIUrl":null,"url":null,"abstract":"<p><p>Plant-associated microbiome plays important role in maintaining overall health of the host plant. Xanthium strumarium displaying resilience to various environmental fluctuations may harbor some bacterial isolates which can help this plant to grow worldwide. The present study aims to isolate endophytic and rhizospheric bacteria from X. strumarium and assess their plant growth-promoting and Ralstonia solanacearum antagonism activity. From a total of 148 isolated bacteria, 7 endophytic and 2 rhizospheric bacterial isolates were found to endow with significant in vitro plant growth promotion activities. The 16S rRNA gene sequence similarity of the 7 endophytic isolates has revealed these bacteria belonging to 5 genera viz. Curtobacterium, Pantoea, Pseudomonas, Microbacterium and Paracoccus whereas, the two rhizospheric isolates were identified as species of Ralstonia pickettii and Priestia megaterium. Maximum growth promotion was observed using the strains Pseudomonas fluorescens XSS6 and Microbacterium hydrothermale XSS20 in the assay conducted on tomato plants. In the in planta inhibition assay of R. solanacearum carried out in tomato seedlings using root bacterization method, Pseudomonas fluorescens XSS6 and Panotea vagans XSS3 showed antagonistic activity with biocontrol efficacy of 94.83% and 83.96%, respectively. GC-MS analysis detected several known antimicrobial compounds in the extract of the culture supernatant of Pseudomonas fluorescens XSS6 and Panotea vagans XSS3 strains, which may contribute to the inhibition of R. solanacearum by these strains. The results of our study indicated that the bacteria associated with X. strumarium exhibit multiple plant-beneficial effects. These bacteria have the potential to be developed as effective biofertilizers and biological control agents, promoting sustainable agriculture practices.</p>","PeriodicalId":9090,"journal":{"name":"Brazilian Journal of Microbiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42770-024-01599-1","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plant-associated microbiome plays important role in maintaining overall health of the host plant. Xanthium strumarium displaying resilience to various environmental fluctuations may harbor some bacterial isolates which can help this plant to grow worldwide. The present study aims to isolate endophytic and rhizospheric bacteria from X. strumarium and assess their plant growth-promoting and Ralstonia solanacearum antagonism activity. From a total of 148 isolated bacteria, 7 endophytic and 2 rhizospheric bacterial isolates were found to endow with significant in vitro plant growth promotion activities. The 16S rRNA gene sequence similarity of the 7 endophytic isolates has revealed these bacteria belonging to 5 genera viz. Curtobacterium, Pantoea, Pseudomonas, Microbacterium and Paracoccus whereas, the two rhizospheric isolates were identified as species of Ralstonia pickettii and Priestia megaterium. Maximum growth promotion was observed using the strains Pseudomonas fluorescens XSS6 and Microbacterium hydrothermale XSS20 in the assay conducted on tomato plants. In the in planta inhibition assay of R. solanacearum carried out in tomato seedlings using root bacterization method, Pseudomonas fluorescens XSS6 and Panotea vagans XSS3 showed antagonistic activity with biocontrol efficacy of 94.83% and 83.96%, respectively. GC-MS analysis detected several known antimicrobial compounds in the extract of the culture supernatant of Pseudomonas fluorescens XSS6 and Panotea vagans XSS3 strains, which may contribute to the inhibition of R. solanacearum by these strains. The results of our study indicated that the bacteria associated with X. strumarium exhibit multiple plant-beneficial effects. These bacteria have the potential to be developed as effective biofertilizers and biological control agents, promoting sustainable agriculture practices.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Brazilian Journal of Microbiology
Brazilian Journal of Microbiology 生物-微生物学
CiteScore
4.10
自引率
4.50%
发文量
216
审稿时长
1.0 months
期刊介绍: The Brazilian Journal of Microbiology is an international peer reviewed journal that covers a wide-range of research on fundamental and applied aspects of microbiology. The journal considers for publication original research articles, short communications, reviews, and letters to the editor, that may be submitted to the following sections: Biotechnology and Industrial Microbiology, Food Microbiology, Bacterial and Fungal Pathogenesis, Clinical Microbiology, Environmental Microbiology, Veterinary Microbiology, Fungal and Bacterial Physiology, Bacterial, Fungal and Virus Molecular Biology, Education in Microbiology. For more details on each section, please check out the instructions for authors. The journal is the official publication of the Brazilian Society of Microbiology and currently publishes 4 issues per year.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信