Histidine Tags in Human Recombinant Alpha B-Crystallin (HSPB5) Proteins Are Detrimental for Zinc Binding Studies

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biopolymers Pub Date : 2025-01-29 DOI:10.1002/bip.70003
Srabani Karmakar, K. P. Das
{"title":"Histidine Tags in Human Recombinant Alpha B-Crystallin (HSPB5) Proteins Are Detrimental for Zinc Binding Studies","authors":"Srabani Karmakar,&nbsp;K. P. Das","doi":"10.1002/bip.70003","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The stability of α-crystallin, the major protein of the mammalian eye lens and a molecular chaperone, is one of the most crucial factors for its survival and function. The chaperone-like activity and stability of α-crystallin dramatically increased in the presence of Zn<sup>2</sup>. Each subunit of α-crystallin could bind multiple zinc atoms through inter-subunit bridging and cause enhanced stability. Three histidines H104, H111, and H119 of recombinant human αB-crystallin (HSPB5) are found to be the Zn<sup>2+</sup> binding residues. In this article, we did site-directed mutagenesis of six histidine residues and made five-point mutants and a double mutant of αB-crystallin. We studied the effect of zinc on the chaperone function, surface hydrophobicity, and stability of the histidine mutants. We removed the histidine tag from H18A and H101V mutants and studied the stability and chaperone function in the presence and absence of zinc. H83 and H111 mutations showed similar enhancement in chaperone function like WT in the presence of Zn<sup>2+</sup>. Point mutants having his tags showed similar stability enhancement, but point mutant H18A without his tag showed less enhancement in stability in the presence of zinc. This indicates the significance of the presence of his tags in the study of zinc binding interaction with recombinant human αB-crystallin.</p>\n </div>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"116 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bip.70003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The stability of α-crystallin, the major protein of the mammalian eye lens and a molecular chaperone, is one of the most crucial factors for its survival and function. The chaperone-like activity and stability of α-crystallin dramatically increased in the presence of Zn2. Each subunit of α-crystallin could bind multiple zinc atoms through inter-subunit bridging and cause enhanced stability. Three histidines H104, H111, and H119 of recombinant human αB-crystallin (HSPB5) are found to be the Zn2+ binding residues. In this article, we did site-directed mutagenesis of six histidine residues and made five-point mutants and a double mutant of αB-crystallin. We studied the effect of zinc on the chaperone function, surface hydrophobicity, and stability of the histidine mutants. We removed the histidine tag from H18A and H101V mutants and studied the stability and chaperone function in the presence and absence of zinc. H83 and H111 mutations showed similar enhancement in chaperone function like WT in the presence of Zn2+. Point mutants having his tags showed similar stability enhancement, but point mutant H18A without his tag showed less enhancement in stability in the presence of zinc. This indicates the significance of the presence of his tags in the study of zinc binding interaction with recombinant human αB-crystallin.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biopolymers
Biopolymers 生物-生化与分子生物学
CiteScore
5.30
自引率
0.00%
发文量
48
审稿时长
3 months
期刊介绍: Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信