Histidine Tags in Human Recombinant Alpha B-Crystallin (HSPB5) Proteins Are Detrimental for Zinc Binding Studies

IF 3.2 4区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Biopolymers Pub Date : 2025-01-29 DOI:10.1002/bip.70003
Srabani Karmakar, K. P. Das
{"title":"Histidine Tags in Human Recombinant Alpha B-Crystallin (HSPB5) Proteins Are Detrimental for Zinc Binding Studies","authors":"Srabani Karmakar,&nbsp;K. P. Das","doi":"10.1002/bip.70003","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The stability of α-crystallin, the major protein of the mammalian eye lens and a molecular chaperone, is one of the most crucial factors for its survival and function. The chaperone-like activity and stability of α-crystallin dramatically increased in the presence of Zn<sup>2</sup>. Each subunit of α-crystallin could bind multiple zinc atoms through inter-subunit bridging and cause enhanced stability. Three histidines H104, H111, and H119 of recombinant human αB-crystallin (HSPB5) are found to be the Zn<sup>2+</sup> binding residues. In this article, we did site-directed mutagenesis of six histidine residues and made five-point mutants and a double mutant of αB-crystallin. We studied the effect of zinc on the chaperone function, surface hydrophobicity, and stability of the histidine mutants. We removed the histidine tag from H18A and H101V mutants and studied the stability and chaperone function in the presence and absence of zinc. H83 and H111 mutations showed similar enhancement in chaperone function like WT in the presence of Zn<sup>2+</sup>. Point mutants having his tags showed similar stability enhancement, but point mutant H18A without his tag showed less enhancement in stability in the presence of zinc. This indicates the significance of the presence of his tags in the study of zinc binding interaction with recombinant human αB-crystallin.</p>\n </div>","PeriodicalId":8866,"journal":{"name":"Biopolymers","volume":"116 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biopolymers","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bip.70003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The stability of α-crystallin, the major protein of the mammalian eye lens and a molecular chaperone, is one of the most crucial factors for its survival and function. The chaperone-like activity and stability of α-crystallin dramatically increased in the presence of Zn2. Each subunit of α-crystallin could bind multiple zinc atoms through inter-subunit bridging and cause enhanced stability. Three histidines H104, H111, and H119 of recombinant human αB-crystallin (HSPB5) are found to be the Zn2+ binding residues. In this article, we did site-directed mutagenesis of six histidine residues and made five-point mutants and a double mutant of αB-crystallin. We studied the effect of zinc on the chaperone function, surface hydrophobicity, and stability of the histidine mutants. We removed the histidine tag from H18A and H101V mutants and studied the stability and chaperone function in the presence and absence of zinc. H83 and H111 mutations showed similar enhancement in chaperone function like WT in the presence of Zn2+. Point mutants having his tags showed similar stability enhancement, but point mutant H18A without his tag showed less enhancement in stability in the presence of zinc. This indicates the significance of the presence of his tags in the study of zinc binding interaction with recombinant human αB-crystallin.

Abstract Image

重组α - b -晶体蛋白(HSPB5)蛋白中的组氨酸标签不利于锌结合研究。
α-晶体蛋白是哺乳动物晶状体的主要蛋白和分子伴侣,其稳定性是影响其存活和功能的关键因素之一。在Zn2的存在下,α-晶体蛋白的类伴侣活性和稳定性显著提高。α-晶体蛋白的每个亚基可以通过亚基间桥接结合多个锌原子,从而提高稳定性。重组人αB-crystallin (HSPB5)的三个组氨酸H104、H111和H119为Zn2+结合残基。在本文中,我们对6个组氨酸残基进行了定点诱变,获得了α b -晶体蛋白的5点突变体和1个双突变体。我们研究了锌对组氨酸突变体的伴侣功能、表面疏水性和稳定性的影响。我们从H18A和H101V突变体中去除组氨酸标签,研究了在锌存在和不存在的情况下组氨酸的稳定性和伴侣蛋白的功能。在Zn2+的作用下,H83和H111突变的伴侣蛋白功能与WT相似。有他的标记的点突变体表现出类似的稳定性增强,而没有他的标记的点突变体H18A在锌存在下稳定性增强较少。这表明他的标签的存在对锌与重组人α b -晶体蛋白结合相互作用的研究具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biopolymers
Biopolymers 生物-生化与分子生物学
CiteScore
5.30
自引率
0.00%
发文量
48
审稿时长
3 months
期刊介绍: Founded in 1963, Biopolymers publishes strictly peer-reviewed papers examining naturally occurring and synthetic biological macromolecules. By including experimental and theoretical studies on the fundamental behaviour as well as applications of biopolymers, the journal serves the interdisciplinary biochemical, biophysical, biomaterials and biomedical research communities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信