Lin Zhiyuan, Xue Minqiao, Xia Jiaojiao, Suo Hongbo, Huang Rubing, Zou Bin
{"title":"Flower-like Biomimetic Enzyme for Rapid and Sensitive Detection of Zearalenone in Vegetable Oil Deodorizer Distillate.","authors":"Lin Zhiyuan, Xue Minqiao, Xia Jiaojiao, Suo Hongbo, Huang Rubing, Zou Bin","doi":"10.1016/j.ab.2025.115780","DOIUrl":null,"url":null,"abstract":"<p><p>In order to achieve high quality production of vitamin E and plant sterols, it is necessary to conduct rapid and accurate detection of fungal toxins in their production raw material (vegetable oil deodorizer distillate, VODD). In this study, the flower-like biomimetic enzyme of silver-doped ZnO was synthesized through wet chemical method and in-situ reduction method. Based on above work, a flower-like biomimetic enzyme modified glass carbon electrode was fabricated, and its excellent detection capability against fungal toxins zearalenone was confirmed through electrochemical analysis. The detection limit was 8 ng mL<sup>-1</sup>, with a linear range of 40 ng mL<sup>-1</sup>-25 μg mL<sup>-1</sup>. Simultaneously, the biomimetic enzyme sensor takes only 10 minutes from preparation to completion of detection, and the RSD between the 7 repeated test results was only 0.612 %. After seven days of storage, the current response value remains 91.5 % of the initial value. In practical applications, the recovery rate of zearalenone in VODD using this sensor ranged from 98.1% to 102.08 %, yielding satisfactory results. Therefore, the novel flower-like biomimetic enzyme represents an ideal choice for developing zearalenone sensors and holds promising prospects for wide application in fungal toxins analysis.</p>","PeriodicalId":7830,"journal":{"name":"Analytical biochemistry","volume":" ","pages":"115780"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ab.2025.115780","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In order to achieve high quality production of vitamin E and plant sterols, it is necessary to conduct rapid and accurate detection of fungal toxins in their production raw material (vegetable oil deodorizer distillate, VODD). In this study, the flower-like biomimetic enzyme of silver-doped ZnO was synthesized through wet chemical method and in-situ reduction method. Based on above work, a flower-like biomimetic enzyme modified glass carbon electrode was fabricated, and its excellent detection capability against fungal toxins zearalenone was confirmed through electrochemical analysis. The detection limit was 8 ng mL-1, with a linear range of 40 ng mL-1-25 μg mL-1. Simultaneously, the biomimetic enzyme sensor takes only 10 minutes from preparation to completion of detection, and the RSD between the 7 repeated test results was only 0.612 %. After seven days of storage, the current response value remains 91.5 % of the initial value. In practical applications, the recovery rate of zearalenone in VODD using this sensor ranged from 98.1% to 102.08 %, yielding satisfactory results. Therefore, the novel flower-like biomimetic enzyme represents an ideal choice for developing zearalenone sensors and holds promising prospects for wide application in fungal toxins analysis.
期刊介绍:
The journal''s title Analytical Biochemistry: Methods in the Biological Sciences declares its broad scope: methods for the basic biological sciences that include biochemistry, molecular genetics, cell biology, proteomics, immunology, bioinformatics and wherever the frontiers of research take the field.
The emphasis is on methods from the strictly analytical to the more preparative that would include novel approaches to protein purification as well as improvements in cell and organ culture. The actual techniques are equally inclusive ranging from aptamers to zymology.
The journal has been particularly active in:
-Analytical techniques for biological molecules-
Aptamer selection and utilization-
Biosensors-
Chromatography-
Cloning, sequencing and mutagenesis-
Electrochemical methods-
Electrophoresis-
Enzyme characterization methods-
Immunological approaches-
Mass spectrometry of proteins and nucleic acids-
Metabolomics-
Nano level techniques-
Optical spectroscopy in all its forms.
The journal is reluctant to include most drug and strictly clinical studies as there are more suitable publication platforms for these types of papers.