Molecularly imprinted hydrogels embedded with two-dimensional photonic crystals for the detection of dexamethasone/betamethasone sodium phosphate

IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Suiyuan Huang, Xuehua Sun, Jianwei Xin, Panpan Ma, Yuqi Zhang, Zhongyu Cai, Ji-Jiang Wang
{"title":"Molecularly imprinted hydrogels embedded with two-dimensional photonic crystals for the detection of dexamethasone/betamethasone sodium phosphate","authors":"Suiyuan Huang,&nbsp;Xuehua Sun,&nbsp;Jianwei Xin,&nbsp;Panpan Ma,&nbsp;Yuqi Zhang,&nbsp;Zhongyu Cai,&nbsp;Ji-Jiang Wang","doi":"10.1007/s00604-025-06981-w","DOIUrl":null,"url":null,"abstract":"<div><p>Dexamethasone sodium phosphate (DSP) and betamethasone sodium phosphate (BSP) imprinted hydrogels embedded with two-dimensional photonic crystals (2DPC) were developed as hormones-sensitive photonic hydrogel sensors with highly sensitive, selective, anti-interference and reproducible recognition capability. The DSP/BSP molecularly imprinted photonic hydrogels (denoted as DSP-MIPH and BSP-MIPH) can specifically recognize DSP/BSP by rebinding the DSP/BET molecules to nanocavities in the hydrogel network. This recognition is enabled by the similar shape, size, and binding sites of the nanocavities to the target molecules. The rebinding of hormones molecules causes the hydrogel to swell, resulting in a particle spacing increase of the embedded 2DPC of the hydrogel. The particle spacing increase can be used as sensing signal and can be acquired by simply measuring the Debye diffraction diameters of the photonic hydrogel sensor before and after exposure with a laser pointer and a ruler. The particle spacing increments of the DSP-MIPH and BSP-MIPH sensors linearly change when DSP and BSP concentrations changes within the ranges 0.025–1 μM, 10–100 μM, and 100–500 μM, and the limits of detection (LoD) are 21.8 nM for DSP and 12.6 nM for BSP, respectively. These photonic hydrogel sensors were successfully applied to the determination of DSP/BSP contents in the real pharmaceutical injections, providing an ideal strategy for the development of portable hormones sensors.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 2","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-06981-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Dexamethasone sodium phosphate (DSP) and betamethasone sodium phosphate (BSP) imprinted hydrogels embedded with two-dimensional photonic crystals (2DPC) were developed as hormones-sensitive photonic hydrogel sensors with highly sensitive, selective, anti-interference and reproducible recognition capability. The DSP/BSP molecularly imprinted photonic hydrogels (denoted as DSP-MIPH and BSP-MIPH) can specifically recognize DSP/BSP by rebinding the DSP/BET molecules to nanocavities in the hydrogel network. This recognition is enabled by the similar shape, size, and binding sites of the nanocavities to the target molecules. The rebinding of hormones molecules causes the hydrogel to swell, resulting in a particle spacing increase of the embedded 2DPC of the hydrogel. The particle spacing increase can be used as sensing signal and can be acquired by simply measuring the Debye diffraction diameters of the photonic hydrogel sensor before and after exposure with a laser pointer and a ruler. The particle spacing increments of the DSP-MIPH and BSP-MIPH sensors linearly change when DSP and BSP concentrations changes within the ranges 0.025–1 μM, 10–100 μM, and 100–500 μM, and the limits of detection (LoD) are 21.8 nM for DSP and 12.6 nM for BSP, respectively. These photonic hydrogel sensors were successfully applied to the determination of DSP/BSP contents in the real pharmaceutical injections, providing an ideal strategy for the development of portable hormones sensors.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microchimica Acta
Microchimica Acta 化学-分析化学
CiteScore
9.80
自引率
5.30%
发文量
410
审稿时长
2.7 months
期刊介绍: As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信