{"title":"Zirconium-doped iron oxide nanoparticles for enhanced peroxidase-like activity","authors":"Peng Hu, Mengxiang Li, Su Li, Shengqiang Wang","doi":"10.1016/j.talanta.2025.127629","DOIUrl":null,"url":null,"abstract":"<div><div>Fe<sub>3</sub>O<sub>4</sub> nanoparticles (NPs) have emerged as pioneering nanozymes with applications in clinical diagnosis, environmental protection and biosensing. However, it is currently limited by insufficient catalytic activity due to poor electron transfer. In this study, we synthesized electron-rich-Zr-doped defect-rich Fe<sub>3</sub>O<sub>4</sub> NPs (Zr<sub>3</sub>Fe<sub>3</sub>O<sub>4</sub>) using a one-pot solvothermal method. Compared with intrinsic Fe<sub>3</sub>O<sub>4</sub> NPs, the resultant Zr<sub>3</sub>Fe<sub>3</sub>O<sub>4</sub> NPs exhibit enhanced peroxidase (POD)-like activity attributed to the presence of active centers of Zr-O-Fe bridges and adsorption sites of asymmetric oxygen vacancies (OVs) Zr-OVs-Fe. The Zr-O-Fe bridges facilitate electron transfer from Zr to Fe, promoting the regeneration of surface Fe<sup>2+</sup> in Fe<sub>3</sub>O<sub>4</sub> NPs. Furthermore, the rich Zr-OVs-Fe significantly enhances the adsorption and electron transfer between catalyst and substrates, thereby regulating the generation pathway of <sup>1</sup>O<sub>2</sub>. Leveraging the remarkable POD-like activity of Zr<sub>3</sub>Fe<sub>3</sub>O<sub>4</sub> NPs, we developed a tandem enzyme-catalyzed reaction for colorimetric detection of glucose. This strategy of constructing active centers by atom doping provides valuable guidance for the development of more efficient Fenton-like catalytic systems with broad applications on a large scale.</div></div>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"287 ","pages":"Article 127629"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0039914025001158","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fe3O4 nanoparticles (NPs) have emerged as pioneering nanozymes with applications in clinical diagnosis, environmental protection and biosensing. However, it is currently limited by insufficient catalytic activity due to poor electron transfer. In this study, we synthesized electron-rich-Zr-doped defect-rich Fe3O4 NPs (Zr3Fe3O4) using a one-pot solvothermal method. Compared with intrinsic Fe3O4 NPs, the resultant Zr3Fe3O4 NPs exhibit enhanced peroxidase (POD)-like activity attributed to the presence of active centers of Zr-O-Fe bridges and adsorption sites of asymmetric oxygen vacancies (OVs) Zr-OVs-Fe. The Zr-O-Fe bridges facilitate electron transfer from Zr to Fe, promoting the regeneration of surface Fe2+ in Fe3O4 NPs. Furthermore, the rich Zr-OVs-Fe significantly enhances the adsorption and electron transfer between catalyst and substrates, thereby regulating the generation pathway of 1O2. Leveraging the remarkable POD-like activity of Zr3Fe3O4 NPs, we developed a tandem enzyme-catalyzed reaction for colorimetric detection of glucose. This strategy of constructing active centers by atom doping provides valuable guidance for the development of more efficient Fenton-like catalytic systems with broad applications on a large scale.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.