Mechanism of Exogenous Melatonin to Alleviate the Fermentation Performance of Saccharomyces cerevisiae Under Copper Stress

IF 8.3 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Mengyuan Wei, Zixian Zhao, Zhiluo Que, Bohan Li, Jinyu Yang, Wenguang Jiang, Yulin Fang, Xiangyu Sun
{"title":"Mechanism of Exogenous Melatonin to Alleviate the Fermentation Performance of Saccharomyces cerevisiae Under Copper Stress","authors":"Mengyuan Wei,&nbsp;Zixian Zhao,&nbsp;Zhiluo Que,&nbsp;Bohan Li,&nbsp;Jinyu Yang,&nbsp;Wenguang Jiang,&nbsp;Yulin Fang,&nbsp;Xiangyu Sun","doi":"10.1111/jpi.70032","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Melatonin is involved in biological adverse stress response and enhances the ability of yeast to adapt to adverse conditions. This study investigated the mechanism of exogenous melatonin addition to <i>Saccharomyces cerevisiae</i> (<i>S. cerevisiae</i>) under copper stress. The results indicated that the addition of excessive exogenous melatonin (100 mg/L) led to the accumulation of maltose and trehalose in <i>S. cerevisiae</i>, which slowed glucose metabolism and further suppressed the alcoholic fermentation process. The cell morphology, cell wall structure, and the organelle morphology of <i>S. cerevisiae</i> EC1118 under copper stress improved with the addition of 1 μg/mL of melatonin. The results of gas chromatography–mass spectrometry (GC–MS) indicated that melatonin induced more creamy and waxy flavors in the fermentation broth, whereas excessive melatonin led to the production of unpleasant fats with a coconut oil smell. The metabolomics results showed that melatonin promoted the synthesis of Cup1p and increased copper resistance by upregulating the sulfur-containing amino acids methionine and cysteine. Furthermore, lipid peroxidation and DNA damage were alleviated through the upregulation of AFMK, which protected the integrity of the cell membrane, thereby the physiological mechanism of alleviating copper stress was achieved. Overall, moderate amounts of melatonin reduced the contraction of cells caused by copper stress and promoted the production of flavor substances. This study holds theoretical and practical importance for wine making and industrial wine production under copper stress.</p></div>","PeriodicalId":198,"journal":{"name":"Journal of Pineal Research","volume":"77 2","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pineal Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jpi.70032","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Melatonin is involved in biological adverse stress response and enhances the ability of yeast to adapt to adverse conditions. This study investigated the mechanism of exogenous melatonin addition to Saccharomyces cerevisiae (S. cerevisiae) under copper stress. The results indicated that the addition of excessive exogenous melatonin (100 mg/L) led to the accumulation of maltose and trehalose in S. cerevisiae, which slowed glucose metabolism and further suppressed the alcoholic fermentation process. The cell morphology, cell wall structure, and the organelle morphology of S. cerevisiae EC1118 under copper stress improved with the addition of 1 μg/mL of melatonin. The results of gas chromatography–mass spectrometry (GC–MS) indicated that melatonin induced more creamy and waxy flavors in the fermentation broth, whereas excessive melatonin led to the production of unpleasant fats with a coconut oil smell. The metabolomics results showed that melatonin promoted the synthesis of Cup1p and increased copper resistance by upregulating the sulfur-containing amino acids methionine and cysteine. Furthermore, lipid peroxidation and DNA damage were alleviated through the upregulation of AFMK, which protected the integrity of the cell membrane, thereby the physiological mechanism of alleviating copper stress was achieved. Overall, moderate amounts of melatonin reduced the contraction of cells caused by copper stress and promoted the production of flavor substances. This study holds theoretical and practical importance for wine making and industrial wine production under copper stress.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Pineal Research
Journal of Pineal Research 医学-内分泌学与代谢
CiteScore
17.70
自引率
4.90%
发文量
66
审稿时长
1 months
期刊介绍: The Journal of Pineal Research welcomes original scientific research on the pineal gland and melatonin in vertebrates, as well as the biological functions of melatonin in non-vertebrates, plants, and microorganisms. Criteria for publication include scientific importance, novelty, timeliness, and clarity of presentation. The journal considers experimental data that challenge current thinking and welcomes case reports contributing to understanding the pineal gland and melatonin research. Its aim is to serve researchers in all disciplines related to the pineal gland and melatonin.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信