Epigenetic modulation rescues neurodevelopmental deficits in Syngap1+/− mice

IF 7.8 1区 医学 Q1 Biochemistry, Genetics and Molecular Biology
Aging Cell Pub Date : 2025-01-29 DOI:10.1111/acel.14408
Akash Kumar Singh, Ila Joshi, Neeharika M. N. Reddy, Sushmitha S. Purushotham, M. Eswaramoorthy, Madavan Vasudevan, Sourav Banerjee, James P. Clement, Tapas K. Kundu
{"title":"Epigenetic modulation rescues neurodevelopmental deficits in Syngap1+/− mice","authors":"Akash Kumar Singh,&nbsp;Ila Joshi,&nbsp;Neeharika M. N. Reddy,&nbsp;Sushmitha S. Purushotham,&nbsp;M. Eswaramoorthy,&nbsp;Madavan Vasudevan,&nbsp;Sourav Banerjee,&nbsp;James P. Clement,&nbsp;Tapas K. Kundu","doi":"10.1111/acel.14408","DOIUrl":null,"url":null,"abstract":"<p>SYNGAP1 is a Ras GTPase-activating protein that plays a crucial role during brain development and in synaptic plasticity. Sporadic heterozygous mutations in <i>SYNGAP1</i> affect social and emotional behaviour observed in intellectual disability (ID) and autism spectrum disorder (ASD). Although neurophysiological deficits have been extensively studied, the epigenetic landscape of <i>SYNGAP1</i> mutation-mediated intellectual disability is unexplored. Here, we have found that the p300/CBP specific acetylation marks of histones are significantly repressed in the hippocampus of adolescent <i>Syngap1</i><sup><i>+/−</i></sup> mice. Additionally, we observed decreased dendritic branching of newly born DCX<sup>+</sup> neurons in these mice, suggesting altered adult hippocampal neurogenesis. To establish the causal relationship of <i>Syngap1</i><sup><i>+/−</i></sup> phenotype and the altered histone acetylation signature we have treated 2–4 months old <i>Syngap1</i><sup><i>+/−</i></sup> mice with glucose-derived carbon nanosphere (CSP) conjugated potent small molecule activator (TTK21) of p300/CBP lysine acetyltransferase (CSP-TTK21). The enhancement of the p300/CBP specific acetylation marks of histones by CSP-TTK21 restored synaptic functions, increased dendritic branching of DCX<sup>+</sup> neurons, enables the capability to reorganise cortical circuits in response to change in the sensory stimuli, and improves behavioural measures in <i>Syngap1</i><sup><i>+/−</i></sup> mice that are very closely comparable to wild type littermates. Further, hippocampal RNA-Seq analysis of these mice revealed that the expression of many critical genes such as Adcy1, Ntrk3, Egr1, and Foxj1 which are key regulators of synaptic plasticity and neurogenesis and are well associated with ID/ASD reversed upon CSP-TTK21 treatment. This study could be the first demonstration of the reversal of autistic behaviour and neural wiring upon the modulation of altered epigenetic modification(s).</p>","PeriodicalId":55543,"journal":{"name":"Aging Cell","volume":"24 3","pages":""},"PeriodicalIF":7.8000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/acel.14408","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Cell","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/acel.14408","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

SYNGAP1 is a Ras GTPase-activating protein that plays a crucial role during brain development and in synaptic plasticity. Sporadic heterozygous mutations in SYNGAP1 affect social and emotional behaviour observed in intellectual disability (ID) and autism spectrum disorder (ASD). Although neurophysiological deficits have been extensively studied, the epigenetic landscape of SYNGAP1 mutation-mediated intellectual disability is unexplored. Here, we have found that the p300/CBP specific acetylation marks of histones are significantly repressed in the hippocampus of adolescent Syngap1+/− mice. Additionally, we observed decreased dendritic branching of newly born DCX+ neurons in these mice, suggesting altered adult hippocampal neurogenesis. To establish the causal relationship of Syngap1+/− phenotype and the altered histone acetylation signature we have treated 2–4 months old Syngap1+/− mice with glucose-derived carbon nanosphere (CSP) conjugated potent small molecule activator (TTK21) of p300/CBP lysine acetyltransferase (CSP-TTK21). The enhancement of the p300/CBP specific acetylation marks of histones by CSP-TTK21 restored synaptic functions, increased dendritic branching of DCX+ neurons, enables the capability to reorganise cortical circuits in response to change in the sensory stimuli, and improves behavioural measures in Syngap1+/− mice that are very closely comparable to wild type littermates. Further, hippocampal RNA-Seq analysis of these mice revealed that the expression of many critical genes such as Adcy1, Ntrk3, Egr1, and Foxj1 which are key regulators of synaptic plasticity and neurogenesis and are well associated with ID/ASD reversed upon CSP-TTK21 treatment. This study could be the first demonstration of the reversal of autistic behaviour and neural wiring upon the modulation of altered epigenetic modification(s).

Abstract Image

表观遗传调节可修复Syngap1+/-小鼠的神经发育缺陷。
SYNGAP1是一种Ras gtpase激活蛋白,在大脑发育和突触可塑性中起重要作用。在智力残疾(ID)和自闭症谱系障碍(ASD)中观察到SYNGAP1的散发性杂合突变影响社会和情感行为。尽管神经生理缺陷已被广泛研究,但SYNGAP1突变介导的智力残疾的表观遗传格局尚未得到探索。在这里,我们发现青少年Syngap1+/-小鼠海马中组蛋白的p300/CBP特异性乙酰化标记被显著抑制。此外,我们观察到这些小鼠新生DCX+神经元的树突分支减少,表明成年海马神经发生改变。为了建立Syngap1+/-表型与组蛋白乙酰化特征改变的因果关系,我们用葡萄糖衍生碳纳米球(CSP)偶联p300/CBP赖氨酸乙酰转移酶(CSP-TTK21)的强效小分子激活剂(TTK21)治疗2-4月龄Syngap1+/-小鼠。CSP-TTK21增强了组蛋白p300/CBP特异性乙酰化标记,恢复了突触功能,增加了DCX+神经元的树突分支,使其能够重组皮层回路以响应感官刺激的变化,并改善了Syngap1+/-小鼠的行为测量,这与野生型幼崽非常接近。此外,对这些小鼠的海马RNA-Seq分析显示,许多关键基因如Adcy1、Ntrk3、Egr1和Foxj1的表达在CSP-TTK21治疗后逆转,这些基因是突触可塑性和神经发生的关键调节因子,并且与ID/ASD密切相关。这项研究可能是第一次证明自闭症行为和神经连接在改变的表观遗传修饰(s)的调节上的逆转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aging Cell
Aging Cell 生物-老年医学
CiteScore
14.40
自引率
2.60%
发文量
212
审稿时长
8 weeks
期刊介绍: Aging Cell, an Open Access journal, delves into fundamental aspects of aging biology. It comprehensively explores geroscience, emphasizing research on the mechanisms underlying the aging process and the connections between aging and age-related diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信